
Spring 2008 IEEE SSCS NEWS 5

TECHNICAL LITERATURE

Introduction
Since the fall of 1999, I have been teaching a course
at Princeton called “Computers in Our World”1 that
attempts to convey the important ideas of computers
and communications, which are such a pervasive part
of our lives. Some computing is highly visible: every
student has a computer (each of which is far more
powerful than the one that served the whole campus
when I was a graduate student in 1964). Everyone has
high speed Internet access, everyone uses email to
keep in touch with friends and family, and we all
shop and search online.

But this is a tiny part of a computing iceberg, most
of which lies hidden below the surface. We don't see,
and usually don't think about, the computers that lurk
within appliances and cars and airplanes and the
ubiquitous electronic gadgets -- cell phones, cameras,
music players, games -- that we take for granted.

Nor do we think much about the degree to which
infrastructure like the telephone system, air traffic
control and the power grid depends on computing.
Although we are from time to time reminded of the
growth of surveillance systems, invasions of our pri-
vacy, and the perils of electronic voting, we perhaps
do not realize the extent to which those are enabled
by computing and communications.

Most people will not be directly involved in creat-
ing such systems, but everyone is strongly affected by
them, and some people will be required to make
important decisions about them. The students in my
class are for the most part not technical; their primary
interests are in the humanities and social sciences. But
I believe that any educated person ought to know at
least the rudiments of what computers can do and
how they do it; what they can't do at all, and what's
merely hard; and how they relate to the world around
us. An educated person should be able to read and
understand a newspaper article about computing, to
learn more from it, and perhaps to spot places where
it is not accurate. More broadly, I want my students to
be intelligently skeptical about technology, and able
to reason about its good and bad aspects. Realistical-
ly, many of the important decisions in our world are
made by people who are not particularly technical in
background. Surely it would be good if everyone had
a decent understanding of crucial technologies like
computing.

Three Topics, Three Big Ideas
What should an educated person know about com-
puting? Everyone will have their own idea; my view
focuses on three core pieces: hardware, software, and
communications.

Hardware is the tangible part, the computers that
we can see and touch in our homes and offices. The
main idea here is that computers are general purpose
devices that process a universal digital representation
of information: everything they work with, even the
instructions that tell them what to do, is ultimately just
numbers, usually expressed as bits -- zeros and ones.

Software -- the instructions that programmers write
to control computers -- is by contrast hardly tangible at
all, but it's what makes computers do things for us.
Here, the idea is that programs describe computation
in excruciatingly detailed steps, each one of which
must be perfect for correct operation. But programmers
are not perfect, so all software has errors, even soft-
ware that must work perfectly.

Communications means computers talking to each
other on our behalf: the Internet and the Web and
email and chat and file-sharing. All of our computers,
and increasingly our other gadgets, are connected by
a universal digital network that moves the universal
digital representation of information among universal
digital processors. The network hides the differences
among myriad different kinds of equipment at all lev-
els, so almost anything can be connected, and ulti-
mately everything will be.

Hardware
The basic structure of computers was more or less
understood by Charles Babbage in the 1830s, though he
was never able to complete one of his mechanical
engines (see Figure 1). ([Swore] is a very good treatment
of Babbage’s work.) Figure 2 is a picture of Babbage.

Figure 1. Babbage’s Differential Engine (Source: www.
msu.edu/course/lbs/126/lectures/images/babbage.jpg)

The clearest modern statement of how a computer
works is found in the classic paper “Preliminary discus-
sion of the logical design of an electronic computing

What Should an Educated Person Know about
Computers?
Brian W. Kernighan, Department of Computer Science, Princeton University, bwk@cs.princeton.edu

1www.cs.princeton.edu/courses/archive/fall07/cos109

TECHNICAL LITERATURE

6 IEEE SSCS NEWS Spring 2008

instrument” by Burks, Goldstine, and von Neumann
[BGvN, 1946], which is well worth reading even today.

The so-called von Neumann architecture has a
processor (the CPU in today's terminology) that does
logic and computation and controls the rest of the
machine, a memory for instructions and data, and
other devices for storing or communicating informa-
tion. The crucial idea is that instructions that tell the
computer what to do are encoded as numbers and
stored in the same memory as the data being
processed. This is why the computer is a general pur-
pose device: change the numbers that tell it what to
do and it does something different.

Computers are digital devices: they deal with num-
bers, and nothing else. Though we live in an analog
world, digital is much simpler to work with -- it's just
plain easier to make devices that only have two states:
voltage high or low, current flowing or not, charged
or uncharged, magnetized up or down, reflectance
high or low, and so on. The abstraction of all these
two-state physical systems is captured in the two
binary digits 0 and 1. No matter what the particular
physical representation, we can encode and process
information in combinations of bits. The many differ-
ent kinds of analog devices of earlier times -- long
playing records, photographic film, VCR tapes, and so
on -- have converged on numeric representations as a
common denominator. The modern trend is strongly
towards converting information from analog to digital
as early as possible in any system, and converting
back to analog as late as possible.

How can information be reduced to numbers? Con-
sider music: If we sample a sound waveform often

enough and accurately enough, we will generate a
sequence of numbers (a voltage level, perhaps) that can
be used to reproduce the original accurately. Nyquist's
theorem tells us that sampling a waveform (see Figure
3) at twice the highest frequency it contains is enough
to capture all the information in the waveform; thus the
sampling rate of 44,100 samples per second used in
audio CD's is adequate to capture the roughly 20 KHz
range of human hearing. The samples are usually meas-
ured to 16 bits of accuracy, that is, 65,536 distinct levels.

Figure 3. Sampling a Waveform (Source: upload.wikime-
dia.org/wikipedia/commons/thumb/1/15/Zeroorder-
hold.signal.svg/400px- Zeroorderhold.signal.svg.png)

Similarly, if an array of closely spaced photocells
samples the intensity of light at different wavelengths,
that too produces numbers that capture an image and
that can be used to reproduce it later; this is the basis
of digital cameras. Movies and TV are just a sequence
of pictures with sound, so they too are readily repre-
sented as numbers. Text of any kind is straightforward:
assign a different number to each letter or character.
And so on: ultimately a digital representation is easy.

The logical structure (the architecture) of a computer as
set forth in the von Neumann paper has not changed sig-
nificantly since 1946, but the physical forms have evolved
amazingly, from mercury delay lines and vacuum tubes to
integrated circuits with billions of transistors on a chip.
Most of the progress has come about because compo-
nents are so much smaller, cheaper and faster. In 1956,
Gordon Moore observed that the number of devices that
could be placed on an integrated circuit was doubling
rapidly and predicted that this growth would continue
(see Figure 4.) Moore's Law, by now a sort of self-fulfill-
ing prophecy, says that every year or two, things will be
twice as good. If computing power doubles every 18
months, that is a factor of a thousand (since 210 is 1024)
in 15 years, and a million (220) in 30 years. Moore's Law
has held for 45 years now, so we are indeed a billion
times better off computationally than we were in 1960.

In 1967, Gene Amdahl (Figure 5) [Amdahl] explored
the relationship between performance and (among
other things) multiple processors. One of the most
recent advances in computer hardware, the develop-
ment of processors with multiple "cores" or CPUs on a
single chip, brings Amdahl's work back as a central
concern. Multiple cores are standard in consumer lap-
tops today, but it is an open problem how to make the
best use of this architecture, both from the hardware
standpoint and from a software perspective.

Figure 2. Charles Babbage (Source://commons.wikime-
dia.org/wiki/Image:Charles_Babbage.jpg)

Spring 2008 IEEE SSCS NEWS 7

TECHNICAL LITERATURE

Figure 5. Gene Amdahl (Courtesy of Dr. Amdahl)
Of course computers can't do everything, nor are

they arbitrarily fast. There are practical and theoretical
limits to how fast we can compute. Alan Turing (see
Figure 6) showed in the 1930s [Turing] that all com-
puters have the same computational power, in the
sense that they can all compute the same functions
(arguing by simulation: a "universal Turing machine"
that could simulate any other computer) and he also
demonstrated classes of computations that could not
be performed in any reasonable amount of time. And
naturally digital computers can't help if the problem
can't be expressed in terms of numeric computations.

Software
By itself, computer hardware doesn’t do much; it
needs something to tell it what to do. “Software” is the
general term for sets of instructions that make a com-
puter do something useful. It’s “soft” by comparison
with “hard” hardware because it's intangible, not easy
to put your hands on. Hardware is quite tangible: if
you drop a computer on your foot, you'll notice. Not
true for software.

There is a strong tendency today to use general
purpose hardware wherever possible -- a processor, a
memory, and suitable peripherals -- and create spe-
cific behaviors by means of software. The conven-

tional wisdom is that software is more flexible, easier
to change (especially once some device has left the
factory), and cheaper. In fact, all of these presumed
advantages are somewhat debatable, but the trend is
there anyway. For example, if a computer program
controls the way that power and brakes are applied
to the drive wheels of a car, then apparently different
features like anti-lock braking and electronic stability
control can be implemented in software, since they
are just different ways of controlling the power to the
wheels.

A popular metaphor for explaining software com-
pares it to recipes for cooking. A recipe spells out the
ingredients needed to make some dish and the
sequence of operations that the cook has to perform.
By analogy, a program needs certain data to operate
on and it spells out what to do to the data. Real
recipes are much more vague and ambiguous than
programs could ever be, however, so the analogy is
not good. Tax forms are better: they spell out in
painful detail what to do ("Subtract line 30 from line
29. If zero or less, enter 0. Multiply line 31 by 25%,
...") The analogy is still imperfect, but tax forms bet-
ter capture the computational aspects -- performing
arithmetic operations, copying data from one place to
another, and having values and computational steps
depend on earlier ones -- and show more of the need
to be precise and cover all possible cases.

An algorithm is the computer science version of a
careful, precise, unambiguous recipe or tax form, a
sequence of steps that is guaranteed to perform some
computation correctly. Each step is expressed in
terms of basic operations whose meaning is com-
pletely specified, for example "add two numbers".
There's no ambiguity about what any operation
means. The input data is unambiguous. And all pos-
sible situations are covered; the algorithm never
encounters a situation where it doesn't know what to

Figure 4. Moore's original graph and Intel's site about
Moore's Law (Source: www.intel.com/pressroom/kits/
events/ moores_law_40th/index.htm)

Figure 6. Alan Turing (Source: www.bletchleypark.org.uk/edu/
lectures/turing.rhtm)

TECHNICAL LITERATURE

8 IEEE SSCS NEWS Spring 2008

do next. (Computer scientists add one more condi-
tion: the algorithm has to stop eventually, so the clas-
sic shampoo instruction to "Lather, Rinse, Repeat" is
not an algorithm.)

One crucial aspect of both algorithms and programs
is how efficiently they operate -- how long they are
likely to run in proportion to the amount of data to be
processed. Algorithm analysis is an active research area
in computer science, but most algorithms in day to day
life are "linear" -- the amount of work is directly or lin-
early proportional to the amount of data. Others are
faster. For instance, searching for a specific item in a
sorted list of n items can be done in time proportional
to log n, by a divide and conquer strategy that mimics
how we look up names in a phone book. Sorting itself
takes n log n time to sort n items into order.

Although in general the goal is to find the fastest
algorithm, some crucial processes depend on the
apparent impossibility of finding a fast algorithm. For
example, public-key cryptography, which is the basis
of the security of electronic commerce, digital signa-
tures, and the like, is based most often on the diffi-
culty of factoring large (hundreds of digits) composite
integers. So far as we know, the time to factor such
numbers grows exponentially with their lengths, thus
making it computationally infeasible to crack encryp-
tion schemes by brute force computation. But if some
advance in mathematics or quantum computing ren-
ders factoring easy, this whole edifice will collapse.

Algorithms capture the abstract notion of how to
perform a task, but real computers are not abstract,
and they need detailed concrete instructions to pro-
ceed. Programming languages are artificial languages
that (to varying degrees) make it easy to express the
steps of a computation in a way that people can
understand that can also be converted into a form that
computers understand.

Early programming was done in so-called assembly
languages. Assembly languages are closely tied to
specific machines: each language expresses computa-
tion in terms of the instruction repertoire that the
machine itself understands. For example, in one kind
of machine, incrementing the value stored in a mem-
ory location M might be accomplished by three
assembly language instructions like this:

LOAD M
ADD 1
STORE M

It is very hard to write programs at this level, and
the programs are tied forever to the specific architec-
tures. Moving to another machine means rewriting the
programs; the same increment operation on a differ-
ent machine might be expressed as

ADD M, 1, M
and as

INCR M
on a third.

Arguably the most important step in software was
taken during the late 1950s and early 1960s, with the
development of "high level" programming languages
like Fortran ("Formula Translation", [Backus]), which
were independent of any specific CPU type. Fortran

was developed at IBM by a team led by John Backus
(see Figure 7). Such languages made it easier for pro-
grammers to describe a computation, and, once writ-
ten, the program could be translated (by a program!)
into specific instructions for a target machine. This
made programming accessible to a much wider pop-
ulation, and also greatly reduced the need to rewrite
code to make it work on different kinds of machines.
All of the sequences above would be written in For-
tran as the single statement

M = M + 1
which the Fortran compiler would translate into the
right instructions for whatever machine was being used.

Programming languages continue to evolve; today's
languages are more expressive and closer to the way
that people think about computing processes com-
pared to early Fortran, though they are still not "nat-
ural" in any sense. (Steve Lohr's Go To:... [Lohr] is an
excellent discussion of programming languages.) The
higher level the language, that is, the closer to our
level, the more translation is needed, and perhaps the
more machine resources are "wasted," but as comput-
ers have gotten faster thanks to Moore's Law, this
overhead has become less and less relevant. By
today's standards, programmers are very expensive,
but computers are free.

What do we build with programming languages?
Operating systems like Windows or Mac OS X or
Unix/Linux control the hardware, managing its
resources and providing a platform on which appli-
cation programs like browsers and office suites and
games and music players can run. Operating systems
are complex and expensive to produce; Vista,
Microsoft's most recent version, took at least five
years and many thousands of people to create. Previ-
ous versions of Windows have been tens of millions
of lines of source code; Vista is presumably bigger.

Figure 7. John Backus (Source: //blog.hundhausen.com/
files/johnbackus.jpg)

Spring 2008 IEEE SSCS NEWS 9

TECHNICAL LITERATURE

Other systems are large as well; for instance, recent
distributions of the Linux kernel of the Linux are well
over 7 million lines. Such systems are among the most
complicated artifacts that we create.

Applications need some kind of platform that pro-
vides services, like a file system and network connec-
tions, and coordinates activities so that independent
processes do not interfere with each other. Historical-
ly, that platform has been a conventional operating
system, but one of the most interesting recent trends
has been towards "middleware," most commonly a
browser, that acts as a platform for applications while
insulating them from the details of a specific operat-
ing system. Google Maps is a good example, as are
web-based mail systems and the nascent area of web-
based office tools. Naturally Microsoft is concerned
about this trend, which is a threat to its commanding
presence as the operating system supplier for the vast
majority of home and office computers.

Sadly, no program works the first time, so a big
part of the job of real-world programming is to test
code as it's being written and certainly before it is
shipped to its users, with the hope of getting rid of
as many bugs as possible. A rule of thumb says that
there is at least one bug for every thousand lines of
code, so even if this is too pessimistic by an order
of magnitude, large systems have thousands of
residual bugs.

Another complexity in real-world software is that
things change continuously, and programs have to be
adapted. New hardware is developed; it needs new
drivers and those may require changes in systems
before they work properly. New laws and other
requirements change the logic of programs -- think
about what has to happen every time the tax code
changes, for example. Machines and tools and lan-
guages become obsolete and have to be replaced.
Expertise disappears too, as people retire, lose inter-
est, or get fired in some corporate down-sizing. (Stu-
dent-created systems at universities suffer in the same
way when the expertise graduates.)

No matter what, software is hard to write, at least
to the standards of correctness and reliability neces-
sary for critical systems like avionics, medical equip-
ment, military systems, automobile control, and so on.
It is possible to create reliable software, but only at
very high cost, and even then no system is perfect.
How to write robust software economically is the
biggest open problem in computing.

Software also raises some interesting legal issues.
Historically, patents could be obtained only for
mechanical devices and processes, but in the 1970s it
became possible to obtain patent protection for soft-
ware, and in the 1990s this was pushed much further
by "business method" patents like Amazon's One-click
technique for making an online purchase. To pro-
grammers, such "inventions" often seem utterly obvi-
ous, but that has not slowed the rate of patents or
patent litigation. Liability for defective software is
another area that is likely to become more important,
though so far most software vendors have managed
to sidestep this issue.

Communications
Communications means computers talking to each
other, usually to do something useful for us, but
sometimes up to no good at all. Most interesting sys-
tems now combine hardware, software, and commu-
nications, with the Internet serving as a universal
"common carrier" that conveys the universal digital
representation of information among universal digital
processors. Communicating systems also give rise to
most of computing's societal issues: difficult problems
of privacy, security, and the conflicting rights of indi-
viduals, businesses and governments.

The Internet began [ISOC] with research into surviv-
able networks in the 1960s, sponsored by the US Depart-
ment of Defense; arguably this was one of the most pro-
ductive uses of military money ever. The Internet
remained the province of scientists and engineers at uni-
versities and research labs until the combination of ubiq-
uitous personal computers, decent bandwidth, and the
World Wide Web invented by Tim Berners-Lee (see Fig-
ure 8) in the early 1990s caused an explosion of use.

The role of the Internet is to connect a large num-
ber of local area networks, so that information origi-
nating on one network can find its way to any other
local network no matter where it is. The genius of the
Internet is that a comparative handful of protocols --
rules for how systems interact -- developed in the
early 1970s have made it possible to connect a wide
variety of different networking technologies, from
phone lines to fiber optic cables, while hiding the
specific properties of individual devices and net-
works.

There are only a handful of basic ideas behind the
Internet. First, it is a packet network: information is
sent in individual independent packets that are rout-
ed through a large and changing collection of net-
works. Each packet consists of a header that contains,
in addition to the data itself, information like the
source and destination, the packet length, the proto-
col version, and a very limited amount of checking.
This is a different model from the telephone system's

Figure 8. Sir Tim Berners-Lee, inventor of the World Wide Web
(Source://blogs.zdnet.com/images/bernerslee400.jpg)

TECHNICAL LITERATURE

10 IEEE SSCS NEWS Spring 2008

circuit network, where each conversation has a dedi-
cated circuit, conceptually a private wire, between the
two talking parties.

Each packet travels through multiple routers that
connect networks; each router passes the packet to a
network that is closer to the packet's ultimate desti-
nation (see Figure 9). Routers continuously exchange
routing information, so they always know how to
move a packet closer to its destination, even as topol-
ogy changes and network connections come and go.
As a packet travels from here to there, it might easily
pass through 20 routers, owned and operated by a
dozen different companies or institutions.

Each computer currently connected to the Internet
is assigned a unique 32-bit Internet Protocol ("IP")
address; hosts on the same network share a common
IP address prefix. The Domain Name System is a large
distributed data base that converts names like
google.com or ieee.org to IP addresses. A central
authority (ICANN, the Internet Corporation for
Assigned Names and Numbers) allocates a block of IP
addresses to a network managed by some organiza-
tion. Each host address on that network is then
assigned locally by the organization. Thus, for exam-
ple, IEEE has been allocated blocks of IP addresses
that it can in turn allocate to subnetworks and com-
puters within IEEE. ICANN is also ultimately respon-
sible for allocating other resources that must neces-
sarily be unique, like top-level domain names them-
selves.

The IP packet mechanism is an unreliable “best
effort” network. The Transmission Control Protocol
(TCP) uses redundancy, sequence numbers, acknowl-
edgements and timeouts to synthesize a reliable two-
way stream from the unreliable IP packets: TCP pack-
ets are wrapped up in a sequence of IP packets that
can be used to achieve very high reliability. Most of
the higher-level services that we associate with the
Internet -- the Web itself, email, chat, file-sharing,
telephony, and so on -- use TCP.

IP itself uses whatever networking technology gets
the information from the current router to the next
one on the path. Specific hardware technologies like
Ethernet encapsulate IP packets as they move around,
but the details of how any particular piece of hard-

ware works, or even that such hardware is involved,
are not visible at the IP level or above.

The protocols divide the software into layers, each
of which provides services to the next higher level
while calling on the services of the next lower level
(see Figure 10). At each level of the protocol hierar-
chy, software behaves as if it is talking to a peer at the
same level at the other end, independent of lower lay-
ers. This strict layering is fundamental to the operation
of the Internet, a way to organize and control com-
plexity and hide irrelevant details of implementation.

The basic TCP/IP mechanism is an amazingly
robust design; although it was developed in the early
1970s, it has stood up to many orders of magnitude of
growth in computers, networks and traffic, with only
minor tweaking.

The Internet presents some very difficult social,
political and legal issues. Privacy and security are hard.
Data passes through shared, unregulated, and diverse
media and sites scattered over the whole world. It's

Figure 9. Internet Cloud
(Source: www.cs.princeton.edu/~bwk/cloud.jpg)

Figure 11. Vint Cerf (left) and Bob Kahn, inventors of TCP/IP.
(Source: www.google.nl/intl/nl/press/images/vint_cerf_lg.jpg)
and (//isandtcolloq.gsfc.nasa.gov/spring2006/images/
kahn.jpg)

Figure 10. Protocol Hierarchy Diagrams
(Source: www.cs.princeton.edu/~bwk)

Spring 2008 IEEE SSCS NEWS 11

TECHNICAL LITERATURE

hard to control access and to protect information along
the way. Many networking technologies use broadcast
media, which are vulnerable to eavesdropping.
Although attacks on Ethernets are now much reduced,
attacks on wireless are on the rise since many wireless
networks do not enable encryption.

The Internet was not designed with security in
mind, so it is not hard to lie about identity and loca-
tion; this makes it possible to mount a variety of
attacks on the unsuspecting. People are remarkably
naive and all too willing to trust a web page that
claims to come from their bank or an online mer-
chant, so phishing attacks that attempt to steal identi-
ties are more successful than one could believe.

The Internet has no geography and carries bits
everywhere almost independent of national bound-
aries. Some countries have tried to limit Internet
access by their citizens by forcing all Internet traffic to
pass through a small set of routers that filter content.
Others have claimed legal rights over Internet activi-
ties that occur largely or entirely outside their bound-
aries, for instance violation of laws on libel or gam-
bling or pornography.

Of course, the Internet has enabled dissemination
of copyrighted material, whether legally or not, at an
unimaginable scale, largely through peer to peer net-
works, and it seems likely that this will continue
regardless of attempts by content providers to restrict
it with ever more Draconian laws and ever more
onerous so-called digital rights management systems.

The Internet has only been in existence since about
1969. The core TCP/IP protocols date from about
1973, and have remained largely the same since then,
in the face of exponential growth of size and traffic, a
remarkable achievement. We are running low on 32-
bit IP addresses, since 32 bits allows for at most 232,
or about 4.3 billion, IP addresses. Mechanisms like
network address translation and dynamic host config-
uration have pushed this off for a while and eventu-
ally version 6 of the IP protocol with its 128-bit
addresses will eliminate the problem.

Conclusions
Although there are of course many, many technical
details, and everything related to computing and com-
munications is evolving rapidly, there are some fun-
damental notions that will remain central and that
should be understood by any educated person,
whether of a technical bent or not.

First, information is universally represented in digi-
tal form. Second, information is universally processed
in digital form. Third, information is stored and trans-
mitted in digital form. Finally, technology has
advanced so far that these digital mechanisms are uni-
versally available for very little cost. Taken together,
these explain the pervasive nature of computers and
computing in our world.

All of these are changing rapidly; we are in a time
of accelerating change. Change is always disruptive,
and we are clearly in for much disruption as far as we
can extrapolate current trends. We are totally depend-
ent on digital technology, and there is no way to slow
its evolution while we figure out how to handle the
problems it presents. Although in almost every way,
computing and communications technologies have
greatly improved our lives, they will continue to pres-
ent difficult challenges along with great rewards.

References
• [BGvN] "Preliminary discussion of the logical design of

an electronic computing instrument", 1946 [available
online at research.microsoft.com/~gbell/computer
_structures__ readings_and_examples/00000112.htm].

• [Turing] "On computable numbers with an applica-
tion to the Entscheidnungsproblem", Proc. London
Math Soc. ser. 2, 42 (1936-7), 230-265. [available
online at /www.abelard.org/turpap2/tp2-ie.asp]

• [Amdahl] Gene Amdahl, "Validity of the Single
Processor Approach to Achieving Large-Scale Com-
puting Capabilities", AFIPS Conference Proceedings,
(30), pp. 483-485, 1967.

• [Backus] "The FORTRAN Automatic Coding Sys-
tem", J. W. Backus, et al, Proc. Western Joint Com-
puting Conference, Feb 1957, 188-198. [available
online at /web.mit.edu/6.035/www/papers/Backus
EtAl-FortranAutomaticCodingSystem-1957.pdf]

• [Lohr] Go To: The Story of the Math Majors, Bridge
Players, Engineers, Chess Wizards, Scientists and
Iconoclasts who were the Hero Programmers of the
Software Revolution, Basic Books, 2001.

• [ISOC] "A brief history of the Internet", Vint Cerf, et
al, Internet Society, Dec 2003. [available online at
www.isoc.org/internet/history/brief.shtml]

• [Swore] Charles Babbage and the Quest to Build
the First Computer, Doron Swore, Penguin USA,
2002

About the Author
Brian Kernighan received his BASc
from the University of Toronto in 1964
and a Ph.D. in electrical engineering
from Princeton in 1969. He was in the
Computing Science Research center at
Bell Labs until 2000, and is now in the
Computer Science Department at
Princeton.

He is the author of 8 books and some technical
papers, and holds 4 patents. He was elected to the
National Academy of Engineering in 2002. His
research areas include programming languages,
tools and interfaces that make computers easier to
use, often for non-specialist users. He is also inter-
ested in technology education for non-technical
audiences.

