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Physical Theory of the Electric Wave-Filter
By GEORGE A. CAMPBELL

NOTE: The electric wave-filter, an invention of Dr. Campbell, is one of the
most important of present day circuit developments, being indispensable
in many branches of electrical communication. It makes possible the
separation of a broad band of frequencies into narrow bands in any desired
manner, and as will be gathered from the present article, it effects the
separation much more sharply than do tuned circuits. As the communica
tion art develops, the need will arise to transmit a growing number of tele
phone and telegraph messages on a given pair of line wires and a grow
ing number of radio messages through the ether, and the filter will prove
increasingly useful in coping with this situation. The filter stands beside
the vacuum tube as one of the two devices making carrier telegraphy and
telephony practicable, being used in standard carrier equipment to separate
the various carrier frequencies. It is a part of every telephone repeater
set, cutting out and preventing the amplification of extreme line frequencies
for which the line is not accurately balanced by its balancing network.
It is being applied to certain types of composited lines for the separation
of the d.c. Morse channels from the telephone channel. It is finding many
applications to radio of which multiplex radio is an illustration. The filter
is also being put to numerous uses in the research laboratory.

The present paper is the first of a series on the electric wave-filter to
he contributed to the Technical Journal by various authors. Being an
introductory paper the author has chosen to discuss his subject from a
physical rather than mathematical point of view, the fundamental char
acteristics of filters being deduced by purely physical reasoning and the
derivation of formulas being left to a mathematical appendix.-Edilor.

T H E purpose of this paper is to present an elementary, physical
explanation of the wave-filter as a device for separating sin

usoidal electrical currents of different frequencies. The discussion
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will be general, and will not involve assumptions as to the detailed
construction of the wave-filter; but in order to secure a certain nu
merical concreteness, curves for some simple wave-filters will be in
cluded. The formulas employed in calculating these curves are
special cases of the general formulas for the wave-filters which are,
in conclusion, deduced by the method employed in the physical
theory.

All the physical facts which are to be presented in this' paper,
together with many others, are implicitly contained in the compact
formulas of the appendix. Although only comparatively few words
of explanation are required to derive these formulas, they will not be
presented at the start, since the path of least resistance is to rely
implicitly upon formulas for results, and ignore the troublesome ques
tion as to the physical explanation of the wave-filter. In order to
examine directly the nature of the wave-filter in itself,as a physical
structure, we proceed as though these formulas did not exist.

It is intended that the present paper shall serve as an introduction
to important papers by others in which such subjects as transients on
wave-filters, specialized types of wave-filters, and the practical design
of the most efficient types of wave-filters will be discussed.'

DEFINITION OF WAVE-FILTER

A wave-filter is a device for separating waves characterized by a dif
ference in frequency. Thus, the wave-filter differentiates between
certain states of motion and not between certain kinds of matter,
as does the ordinary filter. One form of wave-filter which is well
known is the color screen which passes only certain bands of light
frequencies; . diffraction gratings and Lippmann color photogra.phs
also filter light. Wave-filters might be constructed and employed
for separating air waves, water waves, or waves in solids. This
paper will consider only the filtering of electric waves; the same
principles apply in every case, however.

In its usual form the electric wave-filter transmits currents of all
frequencies lying within one or more specified ranges, and excludes
currents of 3011 other frequencies, but does not absorb the energy of
these excluded frequencies. Hence, a combination of two or more
wave-filters may be employed where it is desired to separate a broad
band of frequencies, so that each of several receiving devices is sup-

11 take pleasure in acknowledging my indebtedness to Mr. O. J. Zobel for specific
suggestions, and for the light thrown on the whole subject of wave-filters by his
introduction of substitutions which change the propagation constant without chang
ing the iterative impedance.
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plied with its assigned narrower range of frequencies. Thus, for
instance, with three wave-filters the band of frequencies necessary
for ordinary telephony might be transmitted to one receiving device,
all lower frequencies transmitted to a second device, and all higher
frequencies transmitted to a third device-separation being made
without serious loss of energy in any one of the three bands.

By means of wave-filters interference between different circuits or
channels of communication in telephony and telegraphy, both wire and
radio, can be reduced provided they operate at different frequencies.
The method is furthermore applicable, at least theoretically, to the
reduction of interference between power and communication circuits.
The same is true of the simultaneous use of the ether, the earth return,
and of expensive pieces of apparatus employed for several power or
communication purposes. In all cases the principle involved is the
same as that of confining the transmission in each circuit or channel
to those frequencies which serve a useful purpose therein and exclud
ing or suppressing the transmission of all other frequencies. In the
future, as the utility of electrical applications becomes more widely
and completely appreciated, there will be an imperative necessity
for more and more completely superposing the varied applications of
electricity; it will then be necessary, to avoid interference, to make
the utmost use of every method of separating frequencies including
balancing, tuning, and the use of wave-filters.

DEFINITION OF ARTIFICIAL LINE

The wave-filter problem in this paper is discussed as a phase of
the artificial line problem, and it is desirable to start with a some
what generalized definition of the artificial line. The definition
will, however, not include all wave-filters or all artificial lines, since
a perfectly general definition is not called for here. Even if an ar
tificial line is to be, under certain wave conditions, an imitation of,
or a substitute for, an actual line connecting distant points, hardly
any limitation is thereby imposed upon the structure of the device;
an actual line need not be uniform but may vary abruptly or gradually
along its length and may include two, three, four or more transmis
sion conductors of which one may be the earth. Having indicated
that wave-filters partake of somewhat this same generality of struc
ture, the present paper is restricted to wave-filters coming under
the somewhat generalized artificial line specified by the following
definition:

A n artificial line is a chain of networks connected together in sequence
through two pairs of terminals, the networks being identical but other-
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wise unrestricted, This generalized artificial line possesses the well
known sectional artificial line structure but it need not be an imita
tion of, or a substitute for, any known, real, transmission line con
necting together distant points. The general artificial line is shown
by Fig. 1 where N, N, .... are the identical unrestricted networks
which may contain resistance, self-inductance, mutual inductance,
and capacity.

In discussing this type of structure as a wave-filter, the point of
view of an artificial line is adopted for the reason that it is advan
tageous to regard the distribution of alternating currents as being
dependent upon both propagation and terminal conditions, which
are to be separately considered. In this way the attenuation, or

Fig. l-Generalized Artificial Line as Considered in the Present Paper, where
N, N, ... are Identical Arbitrary Electrical Networks

falling off, of the current from section to section may be most directly
studied. Terminal effects are not to be ignored, but are allowed
for, after the desired attenuation effects have been secured, possibly
by an increase in the number of sections to be employed.

The fundamental property of this generalized artificial line, which
includes uniform lines as a special case, is the mode in which the
wave motion changes from one section to the next, and may be stated
as follows:

WAVE PROPAGAT10l\ THEOREM

Upon an infinite artificial line a steady forced sinusoidal disturbance
falls off exponentially [rom one section to tile next, while the phase changes
by a constant amount. Reversing the direction. of propagation does
not alter either tile aitenuaiion or phase change. Whe1z complex quan
tities are employed the exponential includes the phase change.' This
theorem is proved, without mathematical equations, by observing

2 This theorem is not new, but it is ordinarily derived by means of differential or
difference equations whereas it may be derived from the most elementary general
considerations, thus avoiding all necessity of using differential or difference equa
tions, as illustrated in my raper "On Loaded Lines in Telephonic Transmission"
(Phil. Mag., vol. 5, pp, ]13-.Bl, 190]). In that discussion, as well as in this present
one, it is tacitly assumed that the line is either an actual line with resistance, or the
limit of such a line as the resistance vanishes, so that the amplitude of the wave
never increases towards the far end of an infinite line.
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that the percentage reduction in amplitude and the change in phase,
in passing from the end of one section to the corresponding point of
the next section, do not depend upon either the absolute amplitude
or phase; they depend. instead, only upon the magnitudes, angles
and interconnections of the impedances between the two points and
of the impedances beyond the second point. These impedances
are, since the line is assumed to be periodic and infinite, identically
the same for corresponding points between all sections of the line,
and, therefore, the relative changes in the wave will be identical at
corresponding points in all sections. This proves the exponential
falling off of the disturbance and the constancy of phase change; the
ordinary reciprocal property shows that the wave will fall off identic
ally whichever be the direction of propagation. By the superposition
property it follows that the steady state on any finite portion of a
periodic recurrent structure must be the sum of two equally attenuated
disturbances, one propagated in each direction.

The fundamental wave propagation theorem may be generalized
for any periodic recurrent structure irrespective of the number and
kind of connections between periodic sections, provided the dis
turbance is such as to remain similar to itself at corresponding points
of each of these connections.

EQLI,".-\LE~T GEXERALIZED ARTIFICL\L LI~E

Since, at a given frequency, any network employed solely to con
nect a pair of input terminals with a pair of output terminals may be
replaced by either three star-connected impedances or three delta
connected impedances, the general artificial line of Fig. 1 may be

Fig. 2-Equivalent Artificial Line Obtained by Substituting Star Impedances

3 5 7

2 4 6 B
Fig. 3-Equivalent Artificial Line Obtained by Substituting Delta Impedances
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3 5 7

21 ZI ZI

Z2 Z2 Z2 22

E 2 4 8
Fig. 4-Equivalent Ladder Artificial Line

replaced by the equivalent artificial line of either Fig. 2 or Fig. 3.
By combining the series impedances in Fig. 2 and the parallel im
pedances in Fig. 3. the equivalent line in Fig. 4 is obtainable. The
two ways of arriving at Fig. 4 give different values for the series and
shunt impedances ZI, Z2, and different terminations for the line, but
the propagation of the wave is the same in both cases, since the assumed
substitutions are rigorously exact. While Fig. 4 may be considered
as the generalized artificial line equivalent to Fig. 1, this requires
including in ZI and Z2 impedances which cannot always be physically
realized by means of two entirely independent networks, one of
which gives ZI and the other Z2. This restriction is of no importance
when we are discussing the behavior of the generalized artificial line
at a single frequency; accordingly, the ladder artificial line is suitable
for this part of the discussion. When we come to the more specific
correlation of the behavior of the generalized artificial line at different
frequencies, it will be found more convenient to replace the ladder
artificial line by the lattice artificial line, which avoids the necessity
of considering any impedances which are not individually physically
realizable.

The equivalence between Figs. 1 and 4 is implicitly based upon
the assumption that it is immaterial, for artificial line uses, what
absolute potentials the terminals 1, 2; 3, 4; 5, 6; etc. have-this leaves
us at liberty to connect 2, 4, 6, etc., together. so long as we main
tain unchanged the differences in potential between 1 and 2, 3 and 4,
etc. Instead of connecting 2 and 4 we might equally well connect
2 and 3, and then Z I would connect 1 and 4 as in Fig. 5; with these

3 5 7

E 246
Fig. 5-Equivalent Artificial Line with Crossed Impedances

B
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cross-connections the propagation still remains unchanged. We have
again obtained Fig. 4 with no circuit difference except the inter
change of terminals 3 and 7 with terminals 4 and 8; or, if this is ignored,
a reversal in the sign of the current at alternate pairs of terminals.
This shows that the reversal of the current in alternate sections of
Fig. 4 may not be of primary significance, since networks which are
essentially equivalent have reversed currents.

In order to deal, at the start, with only the simpler terminal con
ditions, we may consider the line to begin with only one-half of the
series impedance Z.. or only one-half of the bridged admittance
IjZ2. These mid-points are called the mid-series and mid-shunt
points; knowing the results of termination at either of these points,
the effect of termination at any other point may be readily deter
mined. For Fig. 4 termination at mid-shunt has been chosen so
that each section of the line adds a complete symmetrical mesh to
the network.

An alternator, introducing an impedance Za, is shown as the source
of the steady-state sinusoidal current in Fig. 4. Assume that the
impedance Z; is variable at pleasure, and that it is gradually adjusted
to make the total impedance in the generator circuit vanish,-in this
case no e.m.f. will be required to maintain the forced steady-state
which becomes a free oscillation. If, in addition, it is assumed that
the line has an infinite number of sections, this required value of Za
will be the negative of the mid-shunt iterative impedance! of the ar
tificial line, which will he designated as K 2• The first shunt on the'
line now includes-e K, in parallel with 2Z2 so that its total impedance
is, say, Z' = -2Z2Kd(2Z2-K2 ) . The infinite line with its first
shunt given the special value Z' is thus capable of free oscillation.

It is possible to simplify this infinite oscillating circuit by cutting
off any part of it which has the same free period as the whole circuit.
The entire infinite line beyond the second shunt 3, 4 certainly has
this same free period, provided its first shunt also has the impedance
Z'. Conceive the shunt Z2 at 3, -1 as replaced by the four impedances
2Z 2 , 2Z2 • + K 2 and - K 2 all in parallel; the first and last, which
together make the Z' required by the infinite line, leave 2Z2 and

~ The" iterative impedance" of an artificial line is the impedance which repeats
itself when one or more sections of the artificial line are inserted between this irn
pedancc and the point of measurement. It is thus the impedance of an infinite
length of any actual artificial line, regardless of the termination of the remote end
of the line. In general, its value is different for the two directions of propagation,
but not when the line is symmetrical, as at mid-series and mid-shunt. The values
at these points are denoted by K, and K.. "Iterative impedance" is employed
because it is a convenient term which is distinctive and describes the most essential
property of this impedance; it seems to he more appropriate than "characteristic
impedance," .. surge impedance" and the other synonyms in use.
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+K2 in parallel, which have the impedance Z" = +2Z2K2/(2Z2+K2 ) .

Removing Z' together with the infinite line on the right there remains
on the left a closed circuit made up of the three impedances Z .. Z'
and Z" in series.

After the division, the infinite line on the right will continue, with
out modification, to oscillate freely, since it is an exact duplicate of
the original oscillating line, and so must maintain the free oscillation
already started. Since it oscillates freely by itself, it had originally
no reaction upon the simple circuit from which it was separated;
this simple circuit on the left must thus also continue its own free
oscillations without change in period or phase.

We might continue and subdivide the entire infinite line into
identical simple circuits but it is sufficient to consider this one detached
circuit, which is shown separately in two ways by Fig. 6, since from

v Z Vir
I 3

-K 2 +Kz Z' ~ Z"

2 4
Fig. 6--Equivalent Section of Fig . .J. Terminated for Free Oscillation

its free oscillations the mathematical formulas for the steady-state
propagation in the artificial line may be derived. This is deferred,
however, until after the physical discussion is completed, so as to
leave no room for doubt that the essentials of the physical theory
are really deduced without the aid of mathematical formulas.

The generalized artificial line, if made up entirely of pure resist
ances, will attenuate all frequencies alike, and the entire wave will
be in the same phase; this remains true, whatever be the impedance
of the individual branch of the network, provided the ratio of the
impedances of all branches is a constant independent of the frequency.
This is precisely the condition to be avoided in a wave-filter; branches
must not be similar but dissimilar as regards the variation of impedance
with frequency. This calls for inductance and capacity with neg
ligible resistance, so that there is an opportunity for the positive
reactance of one branch to react upon the negative reactance of
another branch, in different proportions at different frequencies.
Assuming the unit network N of Fig. 1 to be made up of a finite
number of pure reactances, the equivalent impedances ZI and Z2 of
Figs. 4 and 5 must also be pure reactances. Under this assumption
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let us consider the free oscillations of Fig. 6; first, with K 2 assumed
to be a pure reactance; second, with K 2 assumed to be a pure resist
ance; and third, in order to show that this third assumption is con
trary to fact, with K 2 assumed to be an impedance with both resist
ance and reactance.

With K 2 a reactance, the circuit contains nothing but reactances,
and free oscillations are possible if, and only if, the total impedance
of the circuit is zero. The end impedances Z' and Z" being different,
the potentials at the ends of the mesh will be different, and this means
that the corresponding wave on the infinite line will be attenuated,
since the ratio between these potentials is the rate at which the am
plitudes fall off per section.

With K 2 a pure resistance, a free oscillation is possible only if the
dissipation in the positive resistance at the right end of the circuit
is exactly made up by the hypothetical source of energy existing in
the negative resistance - K 2 at the left end of the circuit. An exact
balance between the energy supplied at one end and that lost at the
other end is possible, since the equal positive and negative resistances
K 2 , -K2 carry equal currents. This continuous transfer of energy
from the left of the oscillating circuit of Fig. I) to the right end is the
action which goes on in every section of the infinite artificial line, and
serves to pass forward the energy along the infinite line.

H K 2 were complex, -K2 on the left of Fig. 6 and +K2 on the
right would not carry the same fraction of the circulating current I,
since they are each shunted by a reactance 2Z 2 which would allow
less of the current to Aow through +K 2 than through - K 2 , if 2Z 2

makes the smaller angle with +K2 , and vice versa. No balance
between absorbed and dissipated energy is possible under these con
ditions when the equal and opposite resistance components carry
unequal currents. A complex K 2 , therefore, gives no free oscilla
tion. and cannot occur with a resistanceless artificial line.

It is perhaps more instructive to consider the transmission on the
line as a whole, rather than to confine attention exclusively to the
oscillations of the simple circuit of Fig. I) and so, at this point, with
out following further the conclusions to be drawn directly from this
oscillating circuit, the fundamental energy theorem of resistanceless
artificial lines will be stated, and then proved as a property of an
infinite artificial line.

ENERG¥ FLOW THEOREM

Upon all infinite line of periodic recurrent structure, and devoid of
resistan ce, a sinusoidal e.m.f. produces one of tuo steady states, viz.:
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1. A to-and-fro surging of energy without any resultant transfer
of energy; currents and potential differences each attenuated from
section to section, but everywhere in the same or opposite phase and
mtttually in quadrature, or,

2. A continuous, non-attenuated flou: of energy along the line
to infinity with no energy surging between symmetrical sections;
current and potential non-attenuated, but retarded or advanced in
phase from section to section, and mutually in phase at mid-shunt
and mid-series points.

The critical frequencies separating the two states of motion are the
totality of the resonant frequencies of the series impedance, the anti
resonant frequencies of the shunt impedance, and the resonant frequencies
of a single mid-shunt section of the line.

To prove the several statements of this theorem let us consider
first the consequences of assuming that the wave motion, in progress
ing along the line, is attenuated, and next the consequences of assum
ing that the wave motion changes its phase. If the wave is atten
uated, however little, at a sufficient distance it becomes negligible,
and the more remote portions of the line may be completely removed
without appreciable effect upon the disturbance in the nearer portion
of the line. That part of the line which then remains is a finite net
work of pure reactances, and in any such network all currents are
always in the same, or opposite, phase; so, also, are the potential
differences; moreover, the two are mutually in quadrature; there is
no continuous accumulation of energy anywhere, but only an ex
change of energy back and forth between the inductances, the ca
pacities and the generator. Continuously varying the amount of
the assumed attenuation will cause a continuous variation in the
corresponding frequency. The motion of the assumed character
may, therefore, be expected to occur throughout continuous ranges
or bands of frequencies and not merely at isolated frequencies.

The question may be asked-How far does the energy surge? Is
the surge localized in the individual section, or does the surge carry
the energy back and forth over more than one section, or even in and
out of the line as a whole? To answer this question, it would be
necessary, as we will now proceed to prove, to know something about
the actual construction of the individual section. If each section is
actually made up as shown in Fig. 6, and this is entirely possible in
the present case (since only positive and negative reactances would
be called for), then the section is capable of free oscillation, as explained
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above, and the surging is localized within the section; twice during
each cycle the amount of energy increases on the right and decreases
on the left. But we do not know that the section is made up like
Fig. 6; we only know that it is equivalent to Fig. 6 as regards input
and output relations. As far as these external relations go, the actual
network may be made exclusively of either inductances or capacities
with the connections shown in Fig. 4 or with the cross-connections
of Fig. 5, according as the current is to have the same or opposite
signs in consecutive sections. In any network made up exclusively
of inductances or of capacities, the total energy falls to zero when
the current or the potential falls to zero, respectively. Twice, there
fore, in every cycle the total energy surges into this line and then it
all returns to the generator. With other networks, surgings inter
mediate between these two extremes will occur. The theorem,
therefore, does not limit the extent of the surging.

Under the second assumption, the phase difference between the
currents at two given points, separated by a periodic interval, is to
be an angle which is neither zero nor a multiple of '*'11". The assumed
difference in phase can only be due to the infinite extension of the
artificial line since, as previously noted, no finite sequence of induct
ances and capacities can produce any difference in phase. That
infinite lines do produce phase differences is well-known; in particular,
an infinite, uniform, perfectly conducting, metallic pair shows a
continuous retardation in phase. If the infinitely remote sections
of the artificial line are to have this controIling effect on the wave
motion, the wave motion must actually extend to infinity, that is,
there can be no attenuation. The wave progressing indefinitely to
infinity without attenuation must be supplied continuously with
energy; this energy must flow along the entire line with neither loss
nor gain in the reactances it encounters on the way. This continuous
flow of energy can take place only provided the currents and poten
tials are not in quadrature; they may be in phase. In considering
the free oscillations of Fig. 6 it was shown that K 2 is real if it is not
pure reactance. That is, for the mid-shunt section the current and
potential are in phase. It is easy to show that they are also in phase
at the mid-series point which is also a point of symmetry.

This flow-of-energy state of motion thus necessarily characterizes
a phase-retarded wave on a resistance1ess artificial line, regardless
of the amount of the assumed positive or negative retardation, which
may be taken to have any value between zero and exact opposition
of phase. Continuously varying the retardation throughout the 180
degrees will, in general, call for a continuous change in the frequency
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of the wave motion. The second state of motion occurs, therefore,
throughout continuous ranges or bands of frequencies.

No other state of motion is possible. With given initial amplitude
and phase any possible wave motion is completely defined by its
attenuation and phase change. All possible combinations of these
two elements have been included in the two states, since the excluded
conditions on each assumption have been included as a consequence
of the other assumption. Thus, the exclusion of no attenuation in
the first assumption was found necessarily to accompany the phase
change of the second assumption; currents in phase or opposed,
which were excluded from the second assumption, were found to be
necessary features accompanying the first assumption. There remains
only to consider the critical frequencies separating the two states of
motion. At these frequencies there can be no attenuation and lag
angles of multiples of =71", including zero, only. At symmetrical
points the iterative impedance of the line must be a pure reactance
to satisfy the first state of motion, and a pure resistance to satisfy
the second state of motion. The only iterative impedances which
satisfy these conditions are zero and infinity.

Some details relating to the pass and stop bands and the criti
cal frequencies are brought together in the following table, where
" stop ( ± )" refers to stop bands, the current being in phase or op
posed in successive sections, and where." and k refer to the line obtained
by uniformly distributing ljZ2 with respect to ZI'

TABLE I.
For Ladder Artificial Line, Fig. 4

UNIFORM ARTIFICIAL LINERatio LINE
Band Critical Z.

Frequency 4£. -r
"Y k r e K 1 K,

-- ----
Stop (+) >0 -l-real imago +real 0«1 imago imago

-- ----
Z, = 0 0 0 0 0 1 0 0
Z, = CD 0 0 co 0 1 co co

----
Pass l»>-1 imago +real imago riB +real + real

-------------
Z, + 4Z, = l -1 i2 i2Z, ir -1 0 co

---- ---- -------
Stop (-) <-1 imago +real iw + rea' -1«\ imago imago

-- ---- -- -- --
Z, = co -co co co co 0 00 2Z.
Z, = 0 -co co lJ co 0 1 0

I
T Z ,
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It is not necessary to check the table item by item. many of which
have already been proven, but it will be instructive to check some of
the items by assuming that Z.f4Z2 , called the ratio for brevity, is
positive to begin with, and that a continuous increase in frequency
reduces the ratio to zero and back through =F 00 to its original posi
tive value. This cycle starts with a stop (+) band since the artificial
line is in effect a network of reactances, all of which have the same
sign: there is attenuation and the iterative impedances are imaginary.
When the ratio decreases to zero, there must be either resonance
which makes Z, = 0, or anti-resonance which makes Z2 = 00 ; in
either case the artificial line has degenerated into a much simpler cir
cuit; it is a shunt made up of all Z2'S combined in parallel, or a simple
series circuit made up of all ZI'S, respectively; the iterative imped
ances are 0 and 00, respectively; there is no attenuation in either case.

With a somewhat further increase of the frequency the ratio will
assume a small negative value with the result that the artificial line
will have both kinetic and potential energy. An analogy now exists
between the artificial line and an ordinary uniform transmission line,
which possesses both kinetic and potential energy, and is ordinarily
visualized as being equivalent to many small positive reactances, in
series, bridged, to the return conductor, by large negative reactances.
The fact that uniform lines do freely transmit waves is a well-known
physical principle, and it i~c not necessary to repeat here the physical
theory of such transmission merely to show that the same phenomenon
occurs with the iden tical structure when it is called an artificial line
or wave-filter.

In order to determine just how far the ratio may depart from zero,
on the negative side, without losing the property of free transmission,
we look for any change in the action of the individual section of the
artificial line which is fundamental; nothing less than a fundamental
change in the behavior of the individual section can produce such a
radical change in the line as an abrupt transition from the free trans
mission of a pass band to the to-and-fro surging of energy in a stop
band. Now as the ratio is made more and more negative by the
assumed increase of frequency, the value -1 is reached, at which
frequency the symmetrical section (Fig. 6) of the artificial line is
capable of free oscillation by itself. This is well recognized as a
most fundamental change in the properties of any network, and it
affords grounds for expecting a complete change in the character of
the propagation over the artificial line. The change must be to a
stop band with currents in opposite phase, since at resonance the
potentials at the two ends of a section are in opposite phase.
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Further increase in the frequency cannot make any change in the
absolute difference in phase between the two ends of the other section,
since opposition is the greatest possible difference in phase; the wave
now adapts itself to increasing frequency by altering its attenuation.

Upon continuing the increase of frequency, so as to reduce the
ratio to - 00, we arrive at either anti-resonance corresponding to
Z 1 = 00 or resonance corresponding to Z~ = 0; the artificial line has
now degenerated into a row of isolated impedances Z~, or into a series
of impedances Z, short-circuited to the return wire; in either case
the attenuation is infinite since no wave is transmitted. Passing
beyond this critical frequency the ratio becomes positive, according
to our assumption, and we are again in a stop (+) band.

While in this rapid survey of what happens during this frequency
cycle little has been actually proven. it should have been made
physically clear why abrupt changes in the character of the trans
mission occur at the frequencies making the ratio equal to 0, -lor
00, since the line degenerates into a simpler structure, or the phase

change reaches its absolute maximum, on account of resonance, at
these particular frequencies.
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Information as to the location of the bands is often obtained most
readily by plotting both Zl and -4Z2 , as illustrated in Fig. 7, and
determining the critical frequencies by noting where the curves cross
each other and the abscissa axis, as well as where they become in
finite. Any particular band is then a pass band, a stop (+) band
or a stop (-) band, according as Zl, the abscissa axis, or -4Z2 lies
between the other two of the three lines. In Fig. 7 the pass bands
are Pi, P 2, P 3, p.; the stop (+) bands are S2, S4, S6; and the stop
(-) bands are Ss. S3, S., S7, and they illustrate quite a variety of
sequences. By altering the curves the bands may be shifted, may
be made to coalesce, or may he made to vanish.

WAVE-FILTER CURVES

The pass band and stop band characteristics of wave-filters are
concretely illustrated for a few typical cases by the curves of Figs.
8-13, which show the attenuation constant A, the phase constant B,
and both the resistance R and reactance X components of the itera
tive impedance for a range of frequencies which include all of the
critical frequencies, except infinity. The heavy curves apply to the
ideal resistanceless case, while the dotted curves assume a power
factor equal to 1/(2011") for each inductance which is a value readily
obtained in practice. This value is, however, not sufficiently large to
make these small scale curves entirely clear, since considerable por
tions of the dotted curves appear to be coincident with the heavy line
curves; but this, as far as it goes, proves the value of the present dis
cussion which rests upon a close approximation of actual wave-filters
to the ideal resistanceless case.

The low pass resistanceless wave-filter, as shown by Fig. 8, pre
sents no attenuation below 1,000 cycles; above this frequency the
attenuation constant increases rapidly, in fact, the full line attenuation
curve increases at the start with maximum rapidity, since it is there
at right angles to the axis. The dotted attenuation curve, which in
cludes the effective resistance in the inductance coils, follows the
ideal attenuation curve closely, except in the neighborhood of 1,000
cycles, where resistance rounds off the abrupt corner which is present
in the ideal A curve. The phase constant B is, at the start, propor
tional to the frequency, as for an ordinary uniform transmission line;
its slope becomes steeper as the critical frequency 1,000 is approached
where the curve reaches the ordinate 11", at which value it remains
constant for all higher frequencies. As shown by the dotted B
curve, resistance rounds off the corner at the critical frequency, but
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otherwise leaves the curve approximately unchanged. The full line
curves for R I and X I show that in the ideal case the iterative im
pedance is pure resistance and pure reactance in the pass and stop
bands respectively, and that resistance smooths the abrupt transition
at the critical frequency.

The high pass wave-filter shown by Fig. 9 passes the band which
is stopped by the low pass wave-filter of Fig. 8, and vice versa. For
this reason the two wave-filters are said to be complementary.

Another set of two complementary wave-filters is shown by Figs.
10 and 11, one of which passes only a single band of frequencies,
not extending to either zero or infinity, while the other passes the
remaining frequencies only. The single pass band of Fig. 10, em
bracing a total phase change 211" on the B curve, is actually a case of
confluent pass bands, each of which embraces the normal angle 11".
The tendency of the two simple pass bands to separate, and leave a
stop band between them, is shown by the hump in the dotted at
tenuation constant curve at 1,000 cycles. If, instead of the two
simple bands having been brought together, one of them had been
relegated to zero or infinity, the single remaining pass band would
have exhibited the normal angular range 11" in the B curve, and there
would have been no hump in the dotted A curve. The stop band of
Fig. 11 also illustrates peculiarities which are not necessary features
of a wave-filter with a single stop band in this position. This wave
filter is obtained from Fig. 7 by making all bands vanish except
P~, Sh S.; and P 3,-by extending P 2 to zero, P;j to infinity, and making
S3 and Sr, coalesce, so that the attenuation becomes infinite in the
stop band without passing from a stop (-) to a stop (+) band.
The coalescing stop bands are responsible for the rapid changes in
the B, R I , and XI curves of Fig. 11 which would not have appeared
if, in Fig. 7, the same pass band had been obtained by retaining PI,
S2 and P 2 and making all other bands vanish.

An extreme case of complementary wave-filters is shown by Figs.
12 and 13, where no frequencies and all frequencies are passed re
spectively. The first result is obtained by combining inductances
alone, which, as has been pointed out above, can give only an at
tenuated disturbance devoid of wave characteristics. The wave
filter shown for passing all frequencies has inductance coils in the
line, and capacities diagonally bridged across the line. This wave
filter combines a constant iterative impedance with a progressive
change in phase which is sometimes useful.' An outstanding char-

, A theoretical use of the phase shifting afforded by the lattice artificial line was
made at page 253 of "Maximum Output Networks for Telephone Substation and
Repeater Circuits," Trans. A. I. E. E., vol, .W, pp. 231-280, 1920.
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acteristic of this type of artificial line is that it has, for all frequencies,
the same iterative impedance as a uniform line with the same total
series and shunt impedances. This artificial line will be considered
in more detail in the next section of this paper.

LATTICE ARTIFICIAL LINES

Up to this point we have considered the properties of artificial line
networks which were supposed to be given. In practice the problem
is ordinarily reversed, and we ask the questions: May the locations
of the bands be arbitrarily assigned? May additional conditions be
imposed? How may the corresponding network be determined, and
what is its attenuation in terms of the assigned critical frequen
cies? These questions might be answered by a study of Fig. 7, in

, 'Z 'zI ~1 3 '2 1 5 '2 I 7

ZE"

z .!z 4 'z 6 1Z 8
2 I ~ I Z I

Fig. 14-Lattice Artificial Line

all its generality, but it seems simpler to base the discussion upon
the artificial line shown in Fig. 14, which is to be a generalization
of Fig. 13 to the extent of making the two impedances Z, and Zz
any possible actual driving-point impedances. It is sometimes
illuminating to regard this artificial line as a nest of bridges, one
within another, as shown by Fig. 15.

On interchanging terminals 3 with 4 and 7 with 8 in Fig. 14 the
network of lines remains unchanged; thus, Z land 4Z2 may be inter
changed in the formulas for the artificial line with no change in the
result, except, possibly, one corresponding to a reversal of the current
at alternate junction points. Another elementary feature of this arti
ficial line is that it degenerates into a simple shunt or a simple series
circuit at the resonant or anti-resonant frequencies, respectively, of
either Zl or Z2, and these are the critical frequencies, terminating
the pass bands. At other frequencies, a positive ratio Zt/4Z2 must
give a stop band, since the reactances are all of one sign. If a small
negative value of this ratio gives free transmission, as we naturally
expect, there will be identical transmission, except for a reversal of
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E 3

Fig. 15-Lattice Artificial Line Drawn to Show the Chain or Bridge Circuits

sign, when the ratio has the reciprocal value, which will be a large
negative quantity, since we may always interchange ZI and 4Z2•

The consequences of this and of other elementary properties of this
artificial line are brought together in the following table:

TABLE 11

For Lattice A rtificial Line, Fig. I.J

UXIFOR~I ARTIFICIAL LINERatio LISE
Band Critical ZI

Frequency 4L 2
------ -------------

-r
"( k r e K

----- ---- --- --- ---- ---
Stop (+l 1»0 2»0 i:llag. + real 0«1 imago

------ ----- ---_.- ---- ---- ---- ---
Z, =() 0 0 n () 1 0
Z2 = 00 (J 0 00 0 1 00

---- --- --- ---
Pass <0 imago + real i-nag. ei8 + real

------ ------ ----- --- ---- --- ---
Z, = 00 co co co ilr -1 00

Z2 =(J 00 00 U 111' -1 (J

-~---- ---- --- --- ----- --- ---
Stop (-) <1 <2 imago /.,. + real -1«0 imago
---------- ---- ---- --- ------- ----

ZI = 4Z2 1 2 2Z, 00 0 2Z 2

The cycle of bands: stop (+), pass, stop (-), adopted for the
table, carries the attenuation factor e- r around the periphery of
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a unit semi-circle; in the stop (+) band it traverses the radius from
o to I, in the pass band it travels along the unit circle through 180
degrees to the value -I, completing the cycle from -1 to O'in the
stop (-) band. In this cycle there are four points of special interest.
corresponding to ratio values I, 0, -1 and 00, for which the wave is
infinitely attenuated, unattenuated with an angular change of 0,
of 90, and of 180 degrees, respectively. It is at the 90 degree angle
that resonance of the individual section occurs; the iterative im
pedance is then equal to 21Z21.

GRAPH OF THE RATIO ZI/4Z2 FOR FIG. 14

If we plot Z 1 and 4Z 2 the pass bands are shown by the points where
the curves become zero or infinite, and the intersections of the two

2

o

-1

. - -

- Z

I ~ P4 I

-

-2o 500 Cycles 1000
Fig. 16--Graph for Locating the Pass and Stop Bands of the Lattice Artificial Line,

where Z,/4Z, ~ [(.\~ - x') e\i - ,\")-2 (x] - .':2)] ... ,.': = cycles/loo, and the

resonant roots x" .\'3, ••• are 0.650, 1, 2, 2.452, 4.442, 5, 6, 8.476 and the double
anti-resonant roots .':2, x•. . . . are 0.766, 2.301, 4.585, 7.423

curves show the frequencies at which the attenuation becomes in
finite. These intersections must be at an acute angle since each
branch of the two curves has a positive slope throughout its entire
length; for this reason it may be desirable to plot the ratio rather than
the individual curves; this is especially desirable in cases where the
two curves do not intersect, but are tangent. Fig. 16 is for a lattice
network equivalent to two sections of the ladder type illustrated by
Fig. 7, and so cannot include a stop (-) band. Accordingly, the
ratio does not go above unity, although it reaches unity at the two
frequencies 300 and 400, corresponding to the infinite attenuation
where stop (-) and stop (+) bands meet in Fig. 7. It is also
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unity at the extreme frequencies zero and infinity. The four pass
bands have, of course, the same locations as in Fig. 7.

Multiplying the ratio by a constant greater than unity introduces
stop (-) bands along with the stop (+) bands; multiplying it by
a constant less than unity removes all infinite attenuations; these
changes within the stop bands are made without altering the loca
tions of the four pass bands.

WAVE-FILTER HAVING ASSIGNED PASS BANDS

In connection with practical applications we especially desire to
know what latitude is permitted in the preassignment of properties
for a wave-filter. If we consider first the ideal lattice wave-filter,
its limitations are those inherent in the form which its two inde
pendent resistanceless one-point impedances" Zl and Z2 may assume.
The mathematical form of this impedance is shown by formula (7)
of the appendix, which may be expressed in words as follows:

Within a constant factor the most general one-point reactance obtain
able by means of a finite, pure reactance network is an odd rational
function of the frequency which is completely determined by assigning
the resonant and anti-resonant frequencies, subject to the condition that
they alternate and include both zero and infinity.

The corresponding general expressions for the quotient and product
of the impedances Zl and Z2 are shown by formulas (8) and (9).
Definite, realizable values for all of the 2n+2 parameters and
2n + 1 optional signs occurring in these formulas may be deter
mined in the following manner:

(a) Assign the location of all It pass bands, which must be treated
as distinct bands even though two or more are confluent; this
fixes the values of the 2n roots Pl ... P2n which correspond
to the successive frequencies at the two ends of the bands.

(b) Assign to the lower or upper end of each pass band propagation
without phase change from section to section; this fixes the
corresponding optional sign in formula (8) as + or -, respec
tively.

(c) Assign a value to the propagation constant at anyone non
critical frequency (that is, assign the attenuation constant in a

• A one-point impedance of a network is the ratio of an impressed electromotive
force at a point to the resulting current at the same point-in contradistinction to
two-point impedances. where the ratio applies to an electromotive force and the
resulting current at two different points.
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stop band or the phase constant in a pass band); this fixes
the value of the constant G and thus completely determines
formula (8) on which the propagation constant depends.

(d) Assign to the lower or upper end of each stop band the iterative
impedance zero; this fixes the corresponding optional sign in
formula (9) as + or -, respectively.

(e) Assign the iterative impedance at anyone non-critical fre
quency (subject to the condition that it must be a positive
resistance in a pass band and a reactance in a stop band);
this fixes the constant H and thereby the entire expression (9)
upon which the iterative impedance depends.

The quotient and product of the impedances Z\ and Z2 are now
fully determined; the values of Z \ and Z2 are easily deduced and also
the propagation constant and iterative impedance by formulas (11)
and (12); Zl and Z2 are physically realizable except for the necessary
resistance in 2.11 networks.

These important results may be summarized as follows:

A lattice uiaue-filter having any assigned pass bands is physically
realizable; the location of the pass bands fully determines the propagation
constant and iterative impedance at all frequencies when their values
are assigned at one non-critical frequency, and zero phase constant and
zero iterative impedance are assigned to the lower or upper end 9f each
pass .band and stop band, respectively.

LATTICE ARTIFICIAL LINE EQUIVALDIT TO THE GENERALIZED
ARTIFICIAL LINE OF FIG. 1

Since any number of arbitrarily preassigned pass bands may be
realized by means of the lattice network, it is natural to inquire
whether this network does not present a generality which is essen
tially as comprehensive as that obtainable by means of any network
N in Fig. 1, provided the generalized line is so terminated as to equalize
its iterative impedances in the two directions. This proves to be
the case.

If network N has identical iterative impedances in both directions,
the lattice network equivalent to two sections of N is shown by Fig.
17; each lattice impedance is secured by using an N network; the N's
placed in the two series branches of the lattice have their far terminals
short-circuited so that they each give the impedance denoted by
Zo; the N's in the two diagonal branches have their far ends open
and they each give the impedance denoted by Z:xo.
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The lattice network of Fig. 18 has in each branch a one-point im
pedance obtained by means of a duplicate of the given network N
and an ideal transformer. The two lattice branch impedances are
ZQ+Z,±2Zq, where the three impedances ZQ' Zn Zq, are the
effective self and mutual impedances of the network IV regarded as a
transformer. This lattice network has identically the same propaga-

Fig. 17-Lattice Unit Equivalent to Two Sections of Fig. 1 Assumed to be
Symmetrical

tion constant as the single network IV shown on the left. Since the
lattice cannot have different iterative impedances in the two direc
tions, it actually compromises by assuming the sum of the two itera
tive impedances presented by N. A physical theory of the equival-

Fig. Ill-Lattice Network Having the Same Propagation Constant as N and an
Iterative Impedance Equal to the Sum of the Two Iterat ive Impedances of IV

ences shown in Figs. 17 and 18 has not been worked up; the analytical
proofs were made by applying the formulas given in the appendix
under lattice networks.

Without going to more complex networks it is, of course, not pos
sible to get a symmetrical iterative impedance, but that is not necessary
for our present purposes where we are concerned primarily with the
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propagation constant. It has now been shown with complete gener
ality that:

The lattice artificial line, with physically realizable branch impedances,
is identically equivalent in propagation constant and mean iterative
impedance to the chain oj identical physically realizable networks con
nected together in sequence through two pairs oj terminals.

To complete this simplification of the generalized artificial line it is
necessary to know the simplest possible form of the one-point im
pedances employed in the branches of the lattice network. The
discussion of the most general one-point impedance obtainable by
means of any network of resistances, self and mutual inductances,
leakages and capacities will find its natural place, together with
allied theorems, in a paper on the subject of impedances. For the
present purpose it is sufficient to state:

The most general branch impedance of the lattice network may be
constructed by combining, in parallel, resonant circuits having im
pedances of the form R+iLp+(G+iCP)-l; or they may equally
well be constructed by combining, in series, anti-resonant circuits having
impedances oj the form [G+iCP+(R+iLP)-tJ- l

SUMMARY OF PHYSICAL THEORY

The wave-filter under discussion approximates to a resistanceless
artificial line, and such an ideal artificial line is capable of two, and
only two, fundamentally distinct states of motion. In one state the
disturbance is attenuated along the line, and there is no flow of energy
other than a back and forth surging of energy, the intensity of which
rapidly dies out along the line. In the other state there is a free
flow of energy, without loss, from section to section along the line,
with no surge of energy between symmetrical sections. Each state
holds for one or more continuous bands of frequencies; these bands
have been distinguished as stop bands and pass bands.

A high degree of discrimination, between different frequencies,
may be obtained, even if each section, taken alone, gives only a
moderate difference in attenuation, by the use of a sufficient number
of sections in the wave-filter, since the attenuation factors vary in
geometrical progression with the number of sections.

Any number of arbitrarily located pass bands may be realized by
means of the lattice artificial line; furthermore, the propagation
constant at one frequency, and the iterative impedance at one fre
quency may both be assigned, while the location of zero phase con-
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stant and zero iterative impedance at the lower or upper end of each
pass band and stop band, respectively, is also optional. This com
pletely determines the lattice artificial line. No additional condition,
other than iterative impedance asymmetry, can be realized by re
placing the lattice network by any four terminal network.

APPENDIX

FOR~IULAS FOR THE ARTIFICIAL LINE

Formulas for the propagation constant and iterative impedance of
the generalized artificial line, expressed in a number of equivalent
forms, have already been given in my paper on Cisoidal Oscillations."
but it seems worth while to deduce the formulas anew here from the
free oscillations of the detached unit circuit of Fig. 6, so as to complete
the physical theory by deducing the comprehensive mathematical
formulas by the same method of procedure.

LADDER NETWORK FORMrLAS
Notation:
ZI, Z2 = series impedance and shunt impedance of the 'section of

Fig. 4, which is equivalent to the general network N of
Fig.l.

r = A + iB = propagation constant per section.
K 1 , K 2 = iterative impedances at mid-series and mid-shunt.
'Y = Oi + i{3 = v'Z IIZ2 = propagation constant for uniform distri

bution of ZI and 1/Z2 , per unit length.
k = v'Z 1Z2 = iterative impedance of this same uniform line.

In Fig. 6, the current is indicated as I and the potentials at the
ends of the section as V, Ve- r . In order that the free oscillation may
be possible the total impedance of the circuit (ZI + Z' + ZIt) must
vanish; this determines the iterative impedance K 2 • In addition to
this condition it is sufficient to makc use of two other simple relations:
the proportionality of the potential drops in the direction of the current
across Z' and Z" to Z' and ZIt, since they carry the same current
(this determines the propagation constant T); and the equality of

6 "Cisodial Oscillations," Trans. A. I. E. E., vol. 3D, pp. 873-90J, 1911. In the
lowest row of squares of Table I, the iterative impedances and propagation constant
of any network are given in five different ways, involving one-point and two-point
impedances, equivalent star impedances, equivalent delta impedances, equivalent
transformer impedances, or the determinant of the network. The only typo
graphical errors in Table I appear to be the four which occur in the first, third and
fifth squares of this row: in the values for K o replace (So - S ...) by (So - ST) and
place a parenthesis before Uo - [TTl; in the first value of K. replace Sqr hy· So.1; in
the last value for r o• add a minus sign so that it reads cosh " '.
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K lo the mid-series iterative impedance of the artificial line, to the
total impedance on the right of the mid-point of the series impedance
Zl. These three relations, which can be written down at once, are:

Ve- r Z" 2Z 2 - K 2

TT = - Z' = 2Z 2 + K 2 '

K 1 Z Z" 1 Z 2Z~ 21=2" 1+ = 2" 1+ 2Z 2 + K 2 '

from which the formulas for I', KI, and K 2 , in terms of Zl, Z2, are
found to be:

r = 2 sinh"" ~ IZl = 2 sinh'? ~'Y', '1 Z2
(1)

K 1 I v'- (1 + Zl):I:{- = k (1 + !. 2):l:~ t ·d 5series (2)K2 r = Z lZ2 4Z 2 • 4'Y 2 a mr I shunt,

and the formulas for ZI and Z2 in terms of rand K 1 or K 2 are likewise
found to be:

ZI = 2K 1 tanh ~ r = K 2 sinh r,

Z2 = Kt/sinh r = ~ K 2 coth ~ r.

(3)

(4)

Formulas (3) and (4) are in the nature of design formulas in that
they determine the impedance Zl and Z2, at assigned frequencies,
which will ensure the assigned values of rand K at these frequencies.
In general, however, it would not be evident how best to secure these
required values of Z, and Z2; complicated or even impossible net
works might be called for, even to approximate values of Zl and Z!
assigned in an arbitrary manner. Fortunately, practical require
ments are ordinarily satisfied by meeting maximum, and minimum
values for the attenuation constant throughout assigned frequency
bands. Formulas (8) and (9) may be employed for this purpose as
explained below.

It is convenient to have formulas (1) and (2) expressed in a variety
of ways, since no one form is well suited for calculation throughout
the entire range of the variables. Accordingly, the following analyti
cally equivalent expressions arc here collected together for reference:
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r = i 2sin-I it =i C05-1 (1 + ~).

= i7r + 2 log [;i + "
= i; - sinh"? (1 + ~)i.

1 3 + 3 5 .5 7 + if [ I 2= 'Y - 24 'Y 640'Y - 7108 l' ...• I I'Y < ,

= 2 cosh ? 0 + i 2 sirr ' -213-.
~ g

29

(5)

(5a)

(5b)

(5c)

(5d)

(;'le)

. :r
= cosh ? ti + i COS-I~, (M)

where 1 + ~ 'Y~ = x + iy, 211 = V(x+lP+y2+V(x-IF+f,

~: I. = k ( 1 + ~ 'Y2 ) ±~ = k (cosh ~ ) ±l = k (sil~l I' ) ±I

(1 1) ± I . Jseries= k -2 l' coth-2 r at mid I h (G)s unto

The formulas leave indeterminate the signs of 'Y, k, I', and K. and
also a term ±i27r1l in 'Y and T. The signs arc to be so chosen that
the real parts are positive, or become positive when positive re
sistance is added to the system. The indeterminate ± ;27r1l can
be made determinate only after knowing something of the internal
structure of the unit network of which the artificial line is composed;
the conditions to be met are-absence of phase differences when alI
branches of the unit network N of Fig. 1 are assumed to he pure
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resistances and continuity of phase as reactances are gradually intro
duced to give the actual network.

Formula (5) is adapted for use in the pass bands, since the ex
pressions are real when 'Y~ is real, negative and not less than - 4;
similarly, formulas (5a) and (5b) are adapted for use in the stop (±)
bands, that is, when 1'2 is positive and less than - 4 respectively.

From the theory of impedances we know that any resistance1ess
one-point impedance is expressible in the form

(7)

where the factor D and the roots Ph P2, ... P2" are arbitrary positive,
reals subject only to the condition that each root is at least as large
a,s the preceding one, This enables us to write down the forms which
the quotient and product of two resista,nceless one-point impedances
may assume, which are as follows:

Z' = G (P~_P2) ,o,l(p!_p2) ,0,1
ZIt p~_p2 P4-p2

Z'Z"= -lI(A) ,o,1(p!_pl) ±1 •..
PI-P- P3-p2

where G, H and the roots PI, P2, ... P2" are arbitrary positive reals,
subject only to the condition that each root is at least as large a,s the
preceding one, and the 2n+l and optional ± signs are mutually
independent. Conversely, if the relations (8) and (9) are prescribed,
then the required individual impedances Z' and ZIt are each of the
form (7) and thus physically realizable.

If in formulas I, 2, 5 and 6 we substitute for Zt/Z2 = ')'2 and
Zl Z2 = k2 the right-hand side of formulas (8) and (9), respectively,
we obtain formulas for the propagation constant and iterative im
pedance of an artificial resistanceless line in terms of frequencies at
which the propagation constant becomes zero or infinite. Ordi
narily, however, we are more interested in having expressions in
terms of the frequencies which terminate the pass bands. To secure
these the substitutions should be 4[8)/(4 - [8J) and [9J (1 - [8]/4)··,
where [8J and [9] stand for the entire right-hand sides of formulas
(8) and (9). This substitution amounts to obtaining the lattice net
work giving the required pass bands, and then transforming to the
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ladder network having the same propagation constant and the same
iterative impedance at mid-series ~r mid-shunt.

LATTICE NETWORK FORMULAS FIG. 14

The impedances of a single section between terminals 1 and 2, with
the far end of the section 3 and 4 either short-circuited or open, are
readily seen to be

(10)

SinceVZoZoo and V Zo/ Zoo are the iterative impedance and the
hyperbolic tangent of the propagation constant for any symmetrical
artificial line, we have the following analytically equivalent formulas
for the lattice network where 'Y = V ZI/Z2, and k = V Z 1Z2 as for
the ladder type.

Lattice Formulas

1 IZI 1
~ r = 2 tanh:" "2 ~ Z2 = 2 tanh- 1 "2 "Y,

{K = VZl Z2 = k.
1

{

Z l = 2K tanh 2 r,
1 1

Z2 = 2K coth 2 r.

(11)

(12)

(13)

(14)

r = i2 tan-1 ;i (15)
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1+!'Y2

= hr + 2 coth-1 ~ = i1l" + cosh"? 4
2 -1+!'Y2

4
1

1+- 'Y
. I 2= 111" + og 1 '

-I+~'Y

1
1 + - 'Y2

.11" • h 1 4 .= ~ - - sm - 12 1 I .::
- 4 'Y.

_ 1 3 + 1 5 1 7 1 1 2- 'Y + 12 'Y 80 'Y + 448 'Y + . . ., 'Y, < ,

where 'Y = a + i 11.

(I5b)

(I5c)

(15d)

(15e)

In these formulas Z tIZ2 = 'Y2 and Z I Z2 = k2 might be expressed
in terms of the resonant and anti-resonant complex frequencies of
Z 1 ancl Zz, the frequencies being made complex quantities so as to
include the damping. Where there is no damping, that is, where all
network impedances are devoid of resistance, the simplified forms
of these expressions are given by formulas (8) and (9). The use of
these formulas for designing wave filters having assigned pass bands
is explained at page 23.


