
The Heaviside Operational Calculus
By JOHN R. CARSON

SYNOPSIS: The art of electrical communication owes a great and increas
ingly recognized debt to Oliver Heaviside for his work in developing and
emphasizing a correct theory of electrical transmission along wires and in
particular for his insistance on the importance of inductance. His oper
ational methods of solving the differential equations which are fundamental
of the theory of electric circuits, although not widely known, are important.
These methods are peculiarly applicable to many important problems of
electrical transmission. The present paper, while theoretical in char
acter, therefore deals with a subject of practical importance to the com
munication engineer.

Without attempting to give any adequate idea of the striking originality
and ingenuity of Heavisidc's methods, his operational calculus may be
very briefly explained as follows. Problems in electric circuit theory are
described by a set of differential equations involving the differential oper-
ator :e. These differential equations may be reduced formally to alge
braic equations by replacing the differential operator by the symbol p and
by this expedient a purely symbolic solution is obtained. This symbolic
solution is called the operational formula of the problem.

In order to interpret the purely symbolic operational formula, Heaviside
proceeded as follows: By direct comparison of the operational formula of
specific problems with their known explicit solutions he was led to assign
a definite significance to the operator p. Thereupon, he obtained by in
duction generalized specific criteria or rules for solving the operational
formula.

The present paper, by attacking the problem from a different standpoint,
shows that the Heaviside operational formula is a shorthand equivalent of
an integral equation from which the methods and rules of his operational
calculus are deducible.-Editor.

AVE RY interesting and by no means the least valuable part of
Heaviside's researches relates to operational methods of solving

the differential equations of a class of physical problems of which
electric circuit theory problems are typical; in fact Volume II of his
Electromagnetic Theory is almost entirely devoted to this subject.
The methods of solution which he originated and employed are of
extraordinary directness and simplicity in a very large class of prob
lems in applied mathematics. In fact it would be difficult to exagger
ate the value of his work along this line, and nowhere is it more im
mediately and usefully applicable than in the theoretical problems
of electro-technics.

Heaviside is, however, by no means easy reading and, in spite of
the considerable number of published studies relating to his opera
tional calculus, it is less generally understood and applied than its
value warrants. The writer has had occasion to apply Heaviside's
methods quite extensively in electrical problems and in the course
of his study was led to a general formula which to him at least, has
proved useful in interpreting and rationalizing the operational cal-
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culus. This formula is presented and discussed in the present paper
with the hope that it may be of service to students of Heaviside in
understanding and applying his methods. The paper may also serve
as a brief recapitulation of some of the outstanding methods ap
plicable to the solution of problems in electric circuit theory.

The problems to which Heaviside applied his operational calculus
relate to the oscillations of electrical and mechanical systems which
can be described by a system of linear differential equations with
constant coefficients or to such partial differential equations as the
telegraph equation. The system is supposed to be set into oscillation
from a state of equilibrium by suddenly applied forces and the opera
tional formula gives the resulting behavior of the system.

The type of problem to which the operational calculus is applicable
and Heaviside's method of solution may be illustrated in a sufficiently
general manner for didactic purposes in connection with the solution
of the system of equations

(1)
anlXI + ... + annxlI = FII(t)

where the coefficients ajk are in general polynominals of the form

d fJ2
ajll = OIjll + {Jjll fit + "'(jll de' + ...

and the 01, (:J, "'( coefficients are constants.
We are concerned with the determination of the variables Xl •• X"

as functions of the independent variable t for the following boundary
conditions; the known functions F1 •• ' Fn and the variables Xl •• X"

are identically zero for values of the independent variable t LO. In other
words, the system is initially in a state of equilibrium when the
.. forces" F, ... Fn are applied. These boundary conditions are
extremely important in physical problems.

Owing to the linear character of the equations we may without loss
of generality set all the F functions equal to zero except one, say
FI(t), and write

(3)
a"IXI + ... + anllXn = O.

The solution of equations (3) for the prescribed boundary condi
tions may be made to depend on the auxiliary equations in the auxil-



J HE J-IEAV1SIJJE OPERATIONAL CALCULUS 45

(6)

(4)

(j = 1,2, ... n)

.. . " (t ~O)
a..lh l + + a....h.. = O.

The function on the right hand side, written, in' accordance with
the Heaviside notation, as unity is identically zero for t<0 and
unity for t~O and It• . . . It" are identically zero for t<O.

It may then be shown that IuXj = fit 0 F (t - y) hi(Y) dy,

iary variables hi ... Itw,-

a"lt! + ... + a, ..h.. =

so that the solution of (3) depends entirely on (4).
Equations (4) formulate the problem actually dealt with by Heavi

side who did not explicitly consider the more general equations (3).
His method of attack was as follows; Writing P" for the differential
operator d"jdt" equations (4) become formally algebraic and yield a
purely symbloic solution

1
hj = H;(P)' (6)

Equation (6) is the Heaviside operational formula; as it stands,
however, it is purely symbolic and the problem remains to find the
significance of the equation and to deduce therefrom the value of
h = h(t) as a function of t.

Heaviside's method from this point on was one of pure induction.
From the known solution of specific problems he inferred general
rules for expanding and interpreting the operational formula: the
body of rules thus developed for solving the operational equation
may be appropriately termed the Heaviside Operational Calculus.

The contribution of the present paper to the theory of the Heavi
side operational calculus depends on the following proposition and
its immediate corollary,"

The d~fferential equations (4), subject to the prescribed boundary con
ditions , may be written as:

11; = 0, for t<O andj = 1, •.. n,
1 [GO (7)

pHj(p) = J e-"h;(t) dt, for t~O.

The integral equation is an identity for all positive real values of p and
consequently determines "j(t) uniquely.

1 This formula has been established in previous papers. It is briefly discussed
in Appendix I.

2 See Appendix I.
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It follows as an immediate corollary that the Heaoiside operational
equation

h=l/H(p)

is merely a short-hand or symbolic equivalent of the integral equation

pi"(p) = J: r»e: Plh (t) dt,

(8)

(9)

The significance of the operational equation and the rules oj the HearJiside
operational calculus are therefore deducible from the latter equation.
The whole problem is thus reduced to the purely mathematical problem
of solving the integral equation.

It should be remarked in passing that, while the Heaviside opera
tional calculus has been elucidated in connection with the solution
of a set of differential equations involving a finite number of variables,
it is not so limited in its applications. It is applicable also when the
number of variables is infinite and to such partial differential equ
tions as the telegraph equation, The foregoing theorem applies also
to all such physical problems where an operational formula h = l/H(p)
is derivable.

Before discussing the solution of the integral equation (9) and de
ducing therefrom some of the rules of the operational calculus, a
simple but interesting and instructive example of the way the oper
tional formula is set up will be given.

Consider a transmission line of infinite "length along the positive
x axis and let it have a distributed inductance L and capacity C per
unit length. Let a unit voltage be applied to the line at the origin
x = 0 at time t = 0; required the line current I and voltage V at
any point x at any subsequent time t.

The differential equations of the problems are

LQ.I=-.Q.Vat ax'
a a

C at V = - ax I.

Replacing ~t by P, we get

1= .Jf e-~ Va.

p"
V=e-,Vo,

where fJ '= l/VLC and Va is the line voltage at x = o.
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Now by the conditions of the problem Vo is zero before, unity after
time t = 0; hence the foregoing equations are operational form~laa
and by (9)

The solutions of these equations are obviously

I" = 0

= ~f
V" = 0

= 1

for t-cx]»,

for t?x/fJ,

for t-cxf»,

for t ~x/fJ,

which are, of course, the well known solutions of the problem. The
directness and simplicity of the solution from the definite integrals is,
however, noteworthy.

By virtue of the foregoing analysis the Heaviside operational cal
culus becomes identical with the methods and rules for the solution
of integral equations of the type

l/PH(p) = It»e-P'h(t) dt (I)

to which brief consideration will now be given.
An integral equation is, of course, one in which the unknown func

tion appears under the sign of integration; the process of determining
the unknown function is the solution of the equation, Integral
equations of the form of (9) were first employed by Laplace and may
be referred to as equations of the Laplace type. More recently they
have become of importance in the modern theories of divergent series
and summability. The solution of a large number of integral equa
tions of the Laplace type has been worked out; however the procedure
is usually peculiar to the particular problem in hand. In this con
nection it is noteworthy that, from a purely mathematical stand
point, Heaviside's operational calculus is a valuable contribution to
the systematic solution of this type of integral equations. That is to
say, methods which he developed for the solution of his operational
equation suggest systematic procedure in the solution of the integral
equation (9), as might be expected from the relationship pointed out
in the present paper.
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As stated above a large number of infinite integrals of the type
appearing in equation (9) have been worked out. Consequently the
solution of (9) can frequently be written down by inspection. When
this is not the case, however, the appropriate procedure is usually
to expand the function l/pH(P) in such a form that the individual
terms are recognizable as identical with infinite integrals of the re
quired type.

An interesting expansion of this kind and one which is applicable
to a large number of physical problems is as follows:

Expand l/pH(p) asymptotically in the form of the divergent series

.
This expansion is purely formal and the series is divergent. It is
summable, however, in the sense that it may be identified with its
generating function I/pH(p). It is also summable in accordance
with Borel's definition of the sum of a divergent series by the Borel
integral ~

This suggests that these two series are equal and consequently that

The solution is therefore

h (t) = L a..t"/nl

provided this series, which is called by Borel the associated function of
the divergent expansion, is itself convergent. This is the case in all
physical problems to which this form of expansion has been applied"

The foregoing will be recognized as identical with Heaviside's
power series solution, obtained by the empirical rule of identifying
l/P" with t"ln! in the asymptotic expansion of l/H(P).

Another form of solution of very considerable practical value
depends on a partial fraction expression which can be carried out in a
large number of physical problems. It is

l/pH (p) = a + b/p + c/P + L A,,/(P - p,,)

I See Bromwich, Theory of Infinite Series, pp, 267-269.
'See Appendix II.
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a = (ljPH(P) ),=00,

b = C;p Hfp)J,-o.

c = CH~P)J,-o,
1

Ak= PkH'(P.)'

at t = 0,
for t >0,

and Pt ... PN are the roots of H(p) = o.
By virtue of this expansion & the solution is

where P denotes a " pulse" at the origin t = 0; that is,

P=oo
=0

jfXJPdt = L

In the usual case where a = c = 0 and b = IjH(O), this reduces to

"""' e,1rlh(t) = IIH(O) +k PkH'(Pk)'

which will be recognized as the celebrated Heaviside Expansion
Solution.

As illustrating the flexibility of the integral identity (9), another
form of solution will be given which is often of value in practical
problems where an explicit solution cannot be obtained. Suppose
that IjpH(p) can be written as

1 1 1
pH(P) = pHt(P) . pH2(p)

and that functions ht(t) and h2(t) can be found which satisfy the
equations

1 i fXJ
pH1(p) = ° e-"hdt)dt

PH~(P) = ~«Ie-"hl(t)dt _.

J The terms a + C/P2 in this expansion were suggested by Dr. O. J. Zobel and
must be included in a number of important problems in electric circuit theory.
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Then:th(required function h(t) is given by

h (t) = [hi (t ,- y) h2 (y) dy (10)

by Borel's Theorem (Bromwich, Theory of Infinite Series, p. 280).8
As a final example of the foregoing discussion we shall consider a

specific problem of some practical interest in itself and which involves
Heaviside's so-called .. fractional differentiation" and his resulting
asymptotic solutions. The physical problem is as follows: a .. unit
voltage" (zero before, unity after time t = 0) is applied through a
terminal condenser Co to an infinitely long cable of resistance Rand
capacity C per' unit length. Required the Voltage V at the cable
terminals.

The·operational formula of this problem is easily deduced; it is

V = vPfO,
1 + vp/a

where 1/0 = CoVR/C.

Consequently the integral equation can be written

l Oll e-"V (t) dt = .!. vP74
o Pl+ViTiJ

1 1
= P1 + v'liTi"

Taking the last form of l/pH(p) , expanding asymptotically and
recognizing that

l/p.+l =[fit>e-'tl"ln! ell

lip- VP =1ClO
e-" (2t)" ~

(2n - 1) (2n - 3) ••• 1 v;;:t

the resulting series solution can be recognized and summed as

ra- I' e- G7

Vet) = eat - " ;: ea' J, Vy dy

rii" jClO e-"
= " ;: en t Vy dy.

The last expansion by repeated integration by parts leads to the
asymptotic series given by Heaviside. It is easy to show, also, that

8 This formula is quite useful; it is applied in the solution of the last example of
thie present paper.
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the series is truly asymptotic in the sense that the error is less than
the last term included.

Another mode of procedure, however, suggests itself, which, by
the aid of equation (10) gives the solution directly without series
expansion. We have

1 lIra
pH(p) = P - a- p - a" P'

= irs> e-~' [hI (t) - h2 (t)] dt,

where
1 [QQ

-- = e-"hI(t)dtp - a 0

and
1 .ill = (0rs> e-I' h2(t)dt.p - a " p In

Consequently hl(t) = ea
, . and since

1 I'VP = 0 e-" Vl/r t dt

it follows at once from (10) that

h2 (t ) = I!!:. ea' I' e- ay _d;_.. 'i'lr 0 vy

The solution h(t) = h1(t) + h2(t) agrees with the preceding derived
from the asymptotic expansion, and is considerably more direct and
simple.

It is interesting to compare this solution with Heaviside's own
operational solution (Electromagnetic Theory Vol. II, p. 40) which
amounts to the following. The operational formula is written

V = -p- - _1_ va;.p-a p-a
The first term is discarded altogether and the second written as

( P)-I1 - a VPfQ,

- (1 + ~ + (~) I + ... ) VilG.
Identifying vP with 1/v''Ir t and p" with d"/dt" the expansion becomes

V = (1 - ~ Ct) + G) (~) (:t) - ... ).~
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which agrees with the foregoing and is the actual asymptotic ex
pansion.'

The foregoing discussion is sufficient, it is hoped, to show the place
of the integral formula (9) in relation to the Heaviside operational
calculus. It is believed to be particularly applicable in connection
with a number of questions relating to divergent series and solutions
which Heaviside's work has raised and which have received too little
attention from mathematicians.

APPENDIX I

A proof of the integral formula

l/pH(p) = [00 e-"h(l)dl

can be made to depend very simply on the formula

di'x(t) = 1ft ~ F(t - y)h(y)dy.

(9).

(5}

This equation may be regarded as well established and can in fact
be deduced in a quite general manner by synthetic arguments. It is.
derived and employed in papers by the writer (Trans. A. I. E. E.,
1911, pp, 345-427, and Phys. Rev. Feb. 1921, pp. 116-134) and is.
deducible at once from the work of Fry (Phys. Rev. Aug. 1919, pp,
115-136).

On the basis of equation (5) the deduction of formula (9), in which,
however, no pretense to rigor is made, proceeds as follows;

If the function F(t) in equations (3) is set equal to e", the complete
solution (5) includes the particular solution 8

e"/H(p)

which involves t only through the exponential term. The complete
solution must, therefore, admit of reduction to the form

x(t) = e"/H(p) + y(l) (a).

where y(l) is the complementary solution.
7 The procedure by which Heaviside arrived at the foregoing asymptotic solution

is not, however, always so fortunate For example if a terminal inductance is sub
stituted for the terminal condenser of the preceding problem, precisely the same
procedure gives an incomplete result. Heaviside recognized this and added an
extra term without explanation (Elm. Th, Vol. II, p. 42) but his solution appears
to be doubtful in the light of some recent work by the writer in applying the formula
of the present paper to the same problem.

S Provided H (1') r o. This restriction is of no consequence in physical prob
lems, where the roots of H (I') are in general complex with real parI lUIealillil.
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Now equation (5) may be written, when F(t) = el', as

x(t) = ~ el'[' e-IYh(y)dy
dt 0

= ~ jell t" e-1Yh(y)dy - el'jOO e-1Yh(y)dyt. (b)
elt I Jo , \

Now the first term of the expression involves t only through the ex
ponential term while the second term involves t through the lower
limit of the integral which ultimately vanishes and therefore includes
no term involving t only through the exponential. Consequently
the first term of (b) is identifiable as the particular solution of (a) and
by direct equation it follows that

l/pH(p) = [rIJ e-1Y h(y)dy (9)

which is the required formula.
The most important restriction which is implicit in the foregoing

is that in splitting up the definite integral of (5) we have tacitly as
sumed that h(t) is finite for all values of t; a restriction which is
necessary in order that the infinite integral shall be convergent for
.all positive real values of p. This condition is satisfied in all physical
problems and therefore introduces no practical limitation of im
portance.

However, even when this restriction does not hold formula (9) may
be valid and uniquely determine h(t) if p is restricted to values which
make the infinite integral convergent, or when the problem is such
that e-1Ih(t) is. an exact derivative. As an example, suppose that

l/H(p) = -pp-a
where a is a real positive quantity. It may be otherwise shown that
1I(t) = e" and formula (9) becomes

_1_ =[00 e- l l - " )' elt
p - a 0

which is valid when p»«.

APPENDIX II

The discussion in the text does not pretend to be a proof of the
power series expansion in any strict sense. A more satisfactory
discussion proceeds as follows:
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We assume that l/H(p) can be formally expanded in the series

We shall here introduce a necessary restriction on the function l/H(P).
It must include no function which is represented asymptotically by
a series all of whose terms are zero; that is a function q,(P) such that
the limit, as p approaches 00, of pflq,(p) is zero for every value of n,
The function e-~ is such a function. (See Whittaker & Watson,
p.l54.)

With this restriction understood, start with the integral (9) and
integrate by parts; we get

_1_ = h(o) + 100

e-P1h(l) (t)dt
R(P) 0

where h(fI)(t) = dfl/dt"h(t).

Now let p approach infinity; in the limit the integral vanishes and

k(o) = l/H(oo) = ao

from the asymptotic expansion.
Integrate again by parts; we get

p(l/H(p) - ao) = h(I)(O) + [00 e-''l,(2) (t)dt.

Now let Pagain approach infinity; in the limit the integral vanishes,
and the right hand side, by virtue of the asymptotic expansion,
approaches the limit ai, whence h(l) (0) = al. Proceeding in this
manner, repeated integrations by parts establish the relation
h(fI) (0) = afl' But provided the series is absolutely convergent, then

k(t) = L h(fI)(o)tfl/n! .

= L aflt"/n!

which establishes the formula.
The power series solution is applicable to a large class of physical

problems and has been rigorously established under certain restric
tions by other methods than that employed above (see papers by
Bromwich, Phil. Mag, May 1920, p. 407; Fry, Phys. Rev. Aug.
1919, p. 115; and the writer, Trans. A. I. E. E. 1919, p. 345).
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On the basis of the preceding and with the aid of formula (10),
expansions of the type

1 •l/pH(p) '" vp L b,,/p ..+1 =;: e-"h(t)dt

which occur in physical problems, can be dealt with. For since

and

it follows from (10) that

h(t) -- 1~[' dy L b / I, "y" n.
V'll" 0 vt=Y

1 ~ b,,(2t)"
... y';t L.. (2n - 1)(2n - 3) .. l '


