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T H E Theory of Probabilities lends itself to the solution of many
important telephone problems. These problems arise not only

in connection with the trunking of calls but also in statistical
studies which underlie the making of fundamental plans, in studies
carried on in physical research and in the manufacturing of telephone
apparatus.

The purpose of the present paper is to discuss certain simple types
of trunking problems which can readily be handled to a sufficient
degree of approximation by well-known probability methods. It
would be quite impossible, within the scope of a single paper to give
a complete discussion of trunking problems in general. For years 1

it has been known that light could be shed on these problems by the
application of probabilities and many articles! have appeared on
this subject; however the treatment to be found in the literature is,
as yet, by no means comprehensive.

About 1905, the development of machine switching systems arrived
at a stage where the relative efficiencies of different sizes of trunk
groups became of prime importance.

In designing and engineering machine switching systems, it is
necessary to compare the costs of various plans using trunk groups
of widely different sizes, in order to choose the cheapest arrangement.
Some plans use trunk groups as small as 5 and others groups as large
as 90.

Machine switching development, therefore, gave a great impetus
to the application of the Theory of Probabilities to telephone engineer
ing and in the Bell System work along this line has been in progress,
systematically, for many years. This work has included not only
the theoretical solutions of various trunking problems, but has also
involved the computation of special probability tables and collec
tion of data by means of which theoretical results have been closely
checked.

In the articles which have hitherto appeared, little or no effort
has been made to present the mathematical theory of trunking in a

1 G. T. Blood of the A. T. & T. Co. in 1898 found a close agreement between the
terms of a binomial expansion ami the results of observations on the distribution
of busy calls. The first comprehensive paper was one written by M. C. Rorty in
October 19().~ and was quite widely circulated within the Bell System.

• An excellent bibliography is given by G. F. O'Dell in the P. O. E. E. J. for Octo
ber 1920.
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manner that can be understood by those who are not experts on the
subject. It is hoped that this article will assist the reader in under
standing both what has been and will be written on the subject. As
Poisson 8 has said" a problem relative to games of chance and proposed
to an austere Jansenist by a man of the world, was the origin of the
calculus of probabilities," and today the reader will find that in the
majority of text books the subject is introduced by the solution of
games of chance and particularly of dice problems. This established
custom will be followed by the present writer who, in the course of
this article; will show how various fundamental trunking problems
can be transformed into equivalent dice problems. This being done,
solutions will be found to be at hand.

Three trunking problems, each one step more complicated than
the preceding, will be dealt with. In order to facilitate the trans
formation to the three equivalent dice problems it is desirable that
the basic assumptions made be as simple as possible. The asump
tions made in all three problems are:

A-During the period of time under consideration, the busy hour of
the day, each subscriber's line makes one call which is as likely to fall at
anyone instant as at any other instant during the period.

Conditions substantially approximating this assumption frequently
occur in practice.

B-If a call when initiated obtains a trunk immediately it retains
possession of that trunk for exactly two minutes. In other words, a
constant holding time of two minutes duration will be assumed.

In practice, holding times, of course, vary from a few seconds to
many minutes and it may at first sight seem that the assumption of
a constant holding time might lead to results deviating too much
from practice to be of value. On this point, the theory of probabilities
itself sheds some interesting light. As will be pointed out in the
following problems, the assumption of a constant holding time is
the equivalent of a dice problem in which a single die, or several iden
tical dice are considered. The telephone problem with variable
holding times may be reduced to the consideration of many dice,
each with a different number of faces. Suppose 600 throws are made
with a die having 6 faces so that on the average % of 600 or 100 aces
would be expected. With Bernoulli's formula it is easy to find the
probability that the number of aces which turn up shall lie between
75 and 125, that is to say, within 25 on each side of the average. Now
suppose 200 throws are made with a die having 20 faces, 200 with a

• Poisson, Recherches Sur La Probabilite Des Jugements, 1837.
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10 face die, 100 with a 5 face die and finally 100 with a 2 face die.
These 600 throws would also give on the average 100 aces. Using
Poisson's generalization of the Bernoulli formula 3 we can calculate
the probability that these 600 throws with various kinds of dice shall
give a number of aces lying between 75 and 125. This probability
will' be greater than in the case of the 600 throws with the die
with a constant number of faces, i.e., the chance that the result will
come outside the range 75 to 125 is less.

The thought is at once suggested that for the same total volume of
traffic and average holding time, fewer calls would be lost when the
holding time is not constant.! The above theory was tested in practice
a few years ago by the engineers of the American Telephone and Tele
graph Company, who made pen register records of hundreds of thou
sands of actual calls as handled by groups of machine switching
trunks at Newark, New Jersey. A pen register was made which
operated as follows: Each trunk in the group was represented by a
pen. These pens were mounted side by side and each was controlled
by a magnet in such a manner that when the trunk was busy the pen
made a mark on a wide strip of paper driven at constant speed under
the pens. There was thus obtained a record showing when each call
originated and when it was concluded. An artificial record was now
made showing what would have happened if each call had lasted for
the average holding time as determined from the original record.
Some 100,000 calls were analyzed in this manner and it was found that
with a group of trunks of a size to carry the calls of the original record
with only a small loss, 30 per cent. more calls would have been lost if
the traffic had been as shown by the artificial record. I t should be
borne in mind, however, that a 30 per cent. change in a probability
of the order of one in one hundred, considering the values we are deal
ing with, is practically negligible.

C-If a trunk is not obtained immediately the calling subscriber
waits for two minutes and then uitlldrau!s his call. If while u'aiting
a trunk becomes idle Ill' takes it and converses for the interoal of time
remaining before his noo minutes are up.

This assumption, although artificial, simplifies materially the analy
sis of the problems. Just what happens in practice to every call

4 This result is here reached by assuming that each subscriber originates one call
per hour. The conclusions are the same, however, even when this is not true, pro
vided the term" holding time" is understood to mean the aggregate of alI the talking
times of the subscriber in an hour.

It may also he mentioned in passing that for a fixed volume of traffic, the dis
crepancy decreases as the number of subscribers who originate that traffic increases;
that is, it is less when the group is composed of a large number of relatively idle
lines than when it is composed of a smalI number of very busy ones.
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which fails to get a trunk immediately is unknown. It is obvious,
however, that when the number of trunks is such that the liability of
the call failing to get a trunk immediately is very small-for example:
of the order of one in one hundred-the reaction of these calls on other
calls must be negligible independently of whatever assumption & is
made in place of C.

PROBLEM I

Referring to Fig. 1 consider a group of 269 subscribers' lines each
equipped with a 20-point line switch. When a subscriber removes his
receiver his line switch revolves and picks up the first idle trunk which

269 Subscriber Lines
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Gf"QUP of
20 Trunks Fig. 1

it comes to. The 20 points of all switches are multipled together so
that a single group of 20 trunks must handle the calls originating from
these 269 lines.

What is the probability that when a particular subscriber X calls he
fails to obtain a trunk immediately?

Referring to Fig. 2 let point P represent the unknown instant
within the hour at which X calls. Consider the two minutes imme
diately preceding the instant P. Evidently, by assumption C, calls
falling outside of this particular two-minute interval can not prevent
X from obtaining a trunk.

• It is well known that the Erlang formula which is based on an assumption dia
metrically opposed to assumption C, namely that calls which find all trunks busy
do not wait for a trunk to become idle, ~ives essentially the same results (for small
probabilities, which are the only ones of interest in practice) as the Poisson furmula
which assumes C.
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If, however, at least 20 of the remaining 268 subscribers initiate
their calls within the particular two minutes under consideration,
there will be no trunk immediately available for X. .This follows
from assumptions Band C.

Consider some one of these 268 other subscribers, for example Y.
The probability that Y.calls in the two minutes under consideration is
by assumption A, the ratio of 2 minutes to 60 minutes, or 1/30, which
is exactly the same as the probability that he would throw an ace if
he were to make a single throw with a 3D-face die. Likewise the
probability that still another subscriber calls in the two minutes
under consideration is exactly the same as the probability that this
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other subscriber should throw the ace in a single throw with a 3D-face
die.

It is evident then, that the probability that X fails to get a trunk
immediately is the same as the probability of throwing at least 20 aces
if 268 throws are made with a 3D-face die. To facilitate the de
termination of this probability and the solution of similar problems,
probability tables of a type shown in Table I have been computed."
In the table, the average number of times an event may be expected
is represented by a. The probability that the event occurs at least
a greater number of times c = a + d is represented by P. In the
problem under consideration, the average number of aces expected is

2(jg
8.96 = -" Likewise in the present problem c = 2D. Turning to

3D
the table, we find that corresponding to c = 2D and a = 8.96, the
value of the probability P is .001. In the particular telephone prob
lem under consideration this means that once in a thousand times

6 Table I is to be found in the Appendix and its origin is there explained.
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when X calls, at least 20 of the other subscribers will have called in
the two minutes immediately preceding, and therefore X fails to get a
trunk immediately. In other words, we may consider that on the
average one in every thousand calls is lost.

In the problem just considered, a known number of subscribers'
lines have had a known number of trunks assigned to them and we
have inquired the probability that any subsc~iber would fail to find
an idle trunk. It is frequently desirable to change the statement of
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the problem slightly. For instance: given a known number of sub
scribers' lines and having decided upon a desirable value of the prob
ability P, we may inquire the number of trunks which must be as
signed. It is evident that in this problem we would enter the table
knowing the value 8.96 and .001, and would find corresponding to
these, the number 20 as representing the size of the required group
of trunks.

PROBLEM II

Referring to Fig. 3 consider a group of 591 subscribers' lines each
equipped with a 35 point line switch giving access to first selectors.
We will suppose for illustration that each first selector has 10 levels
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or choices. The reader unfamiliar with automatic systems may
consider a 10 level selector as one from which calls may be sent in 10
different directions. Assume that each level is equipped with 8
trunks to second selectors. The 591 line switches are multipled
together so that one group of 35 first selectors must handle the calls
originating from these 591 lines. The 35 first selectors are multi
pled together so that one group of 8 second selectors must handle
the calls originating from the 591 lines for a particular level. It is
assumed that the 591 calls are distributed at random with reference
to the 10 levels of the first selectors.

The probability that X should fail to obtain immediately a first
selector can be determined as in the first problem, but now let us
determine what is the probability that subscriber X (having obtained
immediately a first selector) fails to obtain immediately one of the
8 trunks of a particular one of the 10 levels on the first selectors.

For subscriber Y to interfere with X it is necessary that Yoriginate
his call in the two minutes preceding the instant at which X calls
and also that Y call for the particular one of the 10 levels in which
X is interested.

The probability of Y fulfilling the first condition is equal to the
probability of throwing the ace with a 30 face die. The probability of
Y fulfilling the second condition is equal to the probability of throw
ing the ace with a 10 face die,

The question may then be stated in the form of a dice problem as
follows: 591 throws are made with a 30 face die giving C aces. C
throws are made with a 10 face die giving D aces, and the question
is the probability that D is not less than 8. Assuming no restric
tion 7 on the value of C this probability is the same as that of throwing
at least 8 aces in 591 throws with a die having (30) (10) = 300 faces.

The average number of aces to be expected is (591/300) = 1.97 and
with this average the tables tell us that once in a thousand times
we may expect at least 8 aces.

) Since it is assumed that X obtained a first selector it follows that in the 2 minutes
preceding the instant when X called the number of calls must have been less than
the number of first selectors and we should, therefore, not count the throws giving
values of C which are not less than the total number of first selectors. This res
triction becomes of practical importance only where a large proportion of the calls
from the first selectors go to one level. To take an extreme case, assume that all
the calls went to one level, and that therefore each 10 first selectors would require
10 second selectors to handle the traffic. Placing no restriction on the value of C,
since C exceeds the number of first selectors occasionally, we would get the result
that 10 second selectors were not enough to handle all the calls from 10 first selectors,
which is of course absurd. Where, however, the values of C exceeding the number
of first selectors are assumed to he distributed over all 10 levels of the first selectors
their effect on the number of second selectors is negligible.
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PROBLEM III

In practice, a modification of Problem II frequently arises. As
sume an arrangement similar to that of Problem II except that the
number of lines is multiplied by a factor of perhaps 3 or more, each
line switch, however, still having access to all first selectors. The
required number of first selectors will also be larger but not in ex
actly the same ratio because the margin of idle selectors need not be
relatively as great in the large system as in the small. An enlarged
group of trunks running from the first selectors to the second selectors
will now be required. and it will be assumed that there are four times

n Lines &Line Switches

\ T
,
~ ~ ~

10Trunks
to Second
Selectors

G1 G2 G3 G4
Fig. 4

as many trunks coming from each level of the first selectors as there
are points of contact on each level. To meet this situation, the
first selectors and their outgoing trunks are divided into four sub
groups as shown in Fig. 4. The corresponding sub-groups of second
selectors are designated by GL, G2 • Ga. G 4• the number of trunks to
each sub-group being 10. The solution of this problem depends
primarily on the manner in which the line switches distribute calls
to the first selectors. Three cases will be considered.
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Case 1
Referring to Fig. 4 consider a group of n = 1486 lines, and let the

traffic be divided among the ten levels or directions available in
such a way that on the average ~ of the calls are made for a particular
direction or level. Let us suppose the circuit connections between
the line switches and first selectors to be such that the calls are dis
tributed individually at random. By this is meant that the first
selector seized by a calling line is as likely to be one having access
to sub-group G, as to sub-group G2 • G3 or G4 • Note careful1y that
this distribution is assumed whether or not the calling line wants
the particular level under consideration. One way of securing this
random distribution by sub-groups would be to allow the line switches
first to choose by chance one of the four sub-groups of first selectors
and then to choose an idle first selector in the sub-group.

Question-e-What is the probability that when subscriber X calls
he fails to obtain immediately a trunk to a second selector? It is
assumed that X obtained a first selector and that his cal1 is for the
level under consideration.

As before we are interested in the calls made during the two minutes
preceding the instant at which X cal1s. Let the number of these calls be
C. Of these C calls a certain number D want the level for which X
has called. If at least 10 of these D calls were distributed by the
line switches to first selectors having access to the same sub-group
as the one to which the first selector seized by X has access, then
there will be no idle trunk in the sub-group for X. Our telephone
trunking problem evidently transforms to the following series of
dice problems.

1st. 1486 throws are made with a 30 face die giving C aces.
2nd. C throws are made with a 3 face die giving D aces.
3rd. D throws are made with a 4 face die giving x aces, and the

question is the probability that x is not less than 10.

By the theory of dice (assuming no restriction 6 on the value of
C) the probability is the same as that of throwing at least 10 aces in
1486 throws with a die having 30 X 3 X 4 = 360 faces. The average
number of aces to be expected being 1486/360 = 4.13 the probability
tables give .01 as the answer.

Case 2
As in Case 1 assume that on the average ~ of the calls are for

the level under consideration, but take n = 1725 for the number of
lines. Now suppose the circuit connections between line switches.
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and first selectors to be such that the calls are distributed uniformly
to the first selectors, meaning that if at any instant C calls exist, Cf4
of them are on first selectors having access to the 10 trunks of sub
group Gl, Cf4 are on first selectors having access to the 10 trunks
of sub-group G2 and so on. With a constant holding time such as
assumed this result could be secured by a device common to all line
switches which would route the first call to the first sub-group, the
second call to the second sub-group, etc.

X will, as before, be interested in the calls falling in the two minutes
preceding him. By hypothesis X' of these will have been distributed
to first selectors having access to the same sub-group of second selec
tors as the first selector seized by X. Finally, the probability is Y.3
that one of these calls wants the level in which X is interested. The
equivalent dice problem is therefore:

1st. 1725 throws are made with a 30 face die and the number of
aces which turn up are noted. Let this number be C.

2nd. C/4 throws are made with a 3 face die.

What is the probability that this sequence of throws results in at
least 10 aces? This probability is not that of getting at least 10 aces
if 1725 throws are made with a die having 30 X 3 = 90 faces. We
must write separately the formula for each of the two steps of the
problem, then multiply them together and finally sum the product
for all values of C/4 from 10 up. If this is done, again ignoring the
restriction on the upper limit of C, the answer will come out 0.01.
Note that whereas in Case 1 the average volume of traffic carried
by a sub-group of 10 trunks was 4.13, in this case, with the same
probability of failure, it is 1725 (1/30) (1/4) (1/3) = 4.79.

Case 3
In conclusion, a third and very interesting case wiII be mentioned.

A distribution of calls collectively at random would be an appropriate
name, and its nature may be described as follows:

Number each first selector and a corresponding card; shuffle the
cards and deal out, for example, 37 of them. The distribution under
consideration is such that when 37 calls exist the probability that
they occupy a specified set of 37 selectors is equal to the probability
that the cards dealt have the corresponding numbers. This dis
tribution of calls would be measurably secured by arranging the line
switch multiple so that the trunks to the first selectors appear so far
as possible in a different order before every line switch. This case of
distribution differs from that of Case 1. In Case 1, if the first call
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falls on a first selector having access to sub-group G I , for example,
the second call still has the same chance of falling on a first selector
haying access to sub-group G I as on one having access to anyone of the
other three sub-groups. In Case 3, however, the busy first selectors
tend to be distributed uniformly between the 4 sub-groups, so that
if any sub-group should have a preponderance of busy first selectors
the probability of its receiving another call is less than the probability
that one of the other sub-groups, with more idle first selectors, should
receive it. The full discussion of this case is reserved for the future.

APPENDIX

INTRODUCTION TO THE MATHEMATICAL THEORY OF PROBABILITIES

If it is known that one of two events must occur in any trial or
instance, and that the first can occur in 11 ways and the second in v
ways, all of which are equally likely to happen, then the probability
that the first will happen is mathematically expressed by the fraction

u

u + v'

while the probability that the second will happen is

v
u +v·

Denote these probabilities by p and q respectively; then we have:

u
p = u + v'

v
q = u + v' p + q = 1,

the last equation following from the first two, and being the mathe
matical expression for the certainty that one of the two events must
happen.

If the probabilities of two independent events are PI and P2 re
spectively, the probability of their concurrence in any single instance
is PIP~, and in general if Pl. p~, P3 Pn denote the probabilities
of several independent events, and P the probability of their con
currence, then

Consider, now, what may happen in n trials of an event, for which
the probability is P and against which the probability is q. The
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probability that the event will happen every time.is pppp . . . .. 1',
where the factor I' appears n times; that is the probability is 1'''.
The probability that the event will occur (n - 1) times in succession
and then fail is 1'"-1 q.

But if the order of occurrence is djsregarded, this last combination
may arrive in n different ways; so that the probability that the event
will occur (n - 1) times and fail once is np"-I q. Similarly, the prob
ability that the event will happen (n - 2) times and fail twice is
1'''-2 q2 multiplied by n(n - 1)/2, etc. That is, the probabilities
of the several possible occurrences are given by the corresponding terms
of the binominal expansion of (I' + q)". Let

p = 1''' + (;)p,,-Iq + (;)p"-2q2 + .

+ C~1)p"+lq"-'-1 + (:)pcq"-" (1)

where (:) means n (n - 1) (n - 2) ..... (n - x + 1)/(1) (2) ..... (x).

Then P = probability that the event happens exactly n times, plus the
probability that it happens exactly (n - 1) times ... plus

the
probability that it happen exactly c times: in other words,

the
probability that the event happens at least c times in n

trials.
If the series for P contains few terms it may be computed easily.

In general, however, it is impracticable to compute P by means of
the above binomial expansion. Other forms for the value of P
must, therefore, be developed.

One of the most convenient approximations for P when I' is small
has been developed by Poisson. It is known as Poisson's Exponen
tial Binomial Limit and gives the value of P by the following ex
pansion

P = e-a.1'/(c)! + e-aa'+l/(c + I)!
+ roa,H/(c + 2)! ad inf. (2)

where e = base of natural logarithms = 2.718 ..... , a = (np) and
(c)! = c (c - 1) (c - 2) (c - 3) (3) (2) (1).

The following Table gives corresponding values of P, a, c satisfying
equation (2).
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TABLE I.

Awrages (a) Corresponding to Deviation (d) pills At'l'rage (a) to be Expected 'witll
Differellt Probabilities

PROD,\ RILITI ES

Deviation Deviation
Plus I Plus

Average, .001 .002 .00l I .006 , .008 .010 Average,
I

,

c=a+d c=a+d
Average = a

--
I .001 .002 .00l .006 .008 .010 1
2 .045 .065 .091 .114 . 133 .149 2
3 .191 .243 .312 .361 .402 .436 .~

4 .429 .518 .630 .709 .771 .823 4
5 .739 .867 1.02 1.13 I. 21 1. 28 5
6 1. II 1. 27 1.47 1.60 . 1.70 1. 79 6
7 1.52 1. rz 1.95 2.11 2.23 2.33 7
8 1.97 2.20 2.47 2.65 1.79 2.91 8
9 2.45 2. tz 3.02 3.22 3.38 3.51 9

10 2.96 .~. 26 3.60 3.82 3.99 4.13 10
11 .~.49 3.82 4.19 4.43 4.62 s.tt 11
12 4.04 4.40 4.80 5.06 5.26 5.43 12
13 4.61 5.00 5.43 5.71 5.92 6.10 13
14 5.20 5.61 6.07 6.37 6.60 6.i8 14
15 5.79 6.23 6.72 7.04 7.28 7.48 15
16 6.41 6.87 7.39 7.72 7.97 8.18 16
17 7.03 7.52 8.06 8.41 8.68 8.90 17
18 7.66 8.17 8.75 9.11 9.39 9.61 18
19 8.31 8.84 9.44 9.82 10.11 10.35 19
20 8.96 9.52 10.14 10.54 10.84 11.08 20
21 9.62 10.20 10.84 11.26 11.57 11.83 21
22 10.29 10.89 11.56 11.99 12.31 12.57 22
23 10.97 11.59 12.28 12.73 13.06 13.33 23
24 11.65 12.29 13.01 13.47 13.81 14.09 24
25 12.34 13.00 13.i-l I 14.21 14 57 14.85 25


