
Characterization of Java Applications at Bytecode and Ultra-SPARC

Machine Code Levels

Ramesh Radhakrishnan, Juan Rubio and Lizy Kurian John
Electrical and Computer Engineering Department

The University of Texas at Austin, Austin, Texas 78712
fradhakri,jrubio,ljohng@ece.utexas.edu

Abstract

This paper identi�es some of the most important exe-
cution characteristics of a recent suite of Java bench-
marks (SPEC JVM98) from a bytecode perspective and
while running in an interpreted environment on the
Sun Ultra SPARC-II. We instrumented the Java Vir-
tual Machine (JVM) to obtain detailed traces and de-
veloped a Java bytecode analyzer environment called
Jaba to characterize the applications at the bytecode
level. Utilizing Jaba and SPARC pro�ling tools, we
analyze bytecode locality, instruction mix and dynamic
method sizes. It is observed that less than 45 out of
the 250 Java bytecodes constitute 90% of the bytecode
stream. A tri-nodal distribution with peaks of 1, 10
and 27 bytecodes is observed for method size across all
benchmarks in the JVM98 suite. For most of the ap-
plications one bytecode is seen to translate into approx-
imately 25 SPARC instructions.

1 Introduction
Java is a general-purpose, concurrent, class based,
object-oriented programming language, speci�cally de-
signed to have as few implementation dependencies as
possible. The portability of the code along with its rel-
atively small size have made it an attractive option for
the development of applications for heterogeneous en-
vironments such as embedded and networked systems.
The basic objective of this research is to investigate the
characteristics of the Java programming language and
its execution in the interpreted environment on modern
processor architectures. Measuring the performance
of an interpreted language like Java is not relatively
straight forward, since there are two ways in which one
can characterize the performance. On the one hand we
can look at the bytecode level and measure the local-
ity and other characteristics of the bytecodes. On the
other hand, we can measure the performance by run-
ning these bytecodes through an interpreter, in which
case the performance observed is mainly the e�ective-
ness of the interpreter in translating the bytecodes to
machine level instructions. In this paper we present

some of the most important execution characteristics of
a recent suite of Java benchmarks, the SPEC JVM98.
The benchmarks are analyzed both from a bytecode
perspective and at the SPARC machine code level. Al-
though Java performance studies have been performed
by Vijaykrishnan et. al [1], Romer et. al. [2] and
Newhall et. al. [3], most of the past studies were based
on small, often synthetic Java programs.

2 Experimental Methodology
In order to understand the behavior of a Java applica-
tion it is necessary to �rst �nd a mechanism to monitor
the stream of bytecodes that are being executed at a
given time. We developed a mechanism that allows the
capture of bytecode traces which can then be analyzed
o�-line to identify speci�c characteristics of the execu-
tion. Our working environment consisted of an Ultra
SPARC-II running Solaris 2.6 and the JDK (Java De-
velopment Kit) 1.1.6.

The SPEC JVM98 benchmark suite contains eight
di�erent tests, out of which �ve tests are either real
applications or derived from real applications that are
commercially available. SPEC JVM98 allows users to
evaluate performance of the hardware and software as-
pects of the JVM client platform. On the software
side, it measures the e�ciency of the JVM, the just-in-
time (JIT) compiler, and operating system implemen-
tations. On the hardware side, it includes CPU, cache,
memory, and other platform-speci�c features. A sum-
mary of the benchmarks is provided in Table 1. The
benchmarks can be run using three data sets s1, s10
and s100. We use the data set s1 for our studies since
the static size of the programs were seen to remain
approximately the same across the di�erent data sets
(data is presented in Section 3.1).

In order to obtain adequate information from the ex-
ecution of a Java application we instrumented the JVM
provided with Sun's JDK 1.1.6. The tracing mecha-
nism was then validated using Sun's tracing JVM on a
set of synthetic benchmarks. The analysis of the traces
is done o�-line to minimize the overhead on the tracing
JVM. The analyzer was developed based on the Appli-



Benchmark Description and Source
compress A popular LZW compression program.

jess A Java version of NASA's popular CLIPS
rule-based expert systems.

db Data management software written by IBM.
javac The JDK Java compiler from Sun.

mpegaudio The core algorithm for software that
decodes an MPEG-3 audio stream.

mtrt A dual-threaded program that ray traces an
image �le.

jack A parser-generator from Sun Microsystems.

Table 1: Description of the SPEC JVM98 Benchmarks

Bytecode Description

Loads loads data from local variables into stack
Stores the counterpart of loads
Stack allows for push and pop of operands into the

stack, as well as duplication and swap of data
in the stack

Constant allocation of elements in the constant pool
pool
ALU arithmetic (both integer and 
oating point)

and logic instructions
Branches tests for a condition and changes the

program counter based on it
Jump non-unitary increments or decrements to the

program counter
Method di�er from branches and jumps since it is also
calls necessary to allocate a new frame to hold the

stack of the method and deallocate for returns

Table 2: Classi�cation of Bytecodes

cation Programmer Interface (API) provided by Shade
[4]. The result was Jaba, a Java bytecode analyzer
library. Jaba allows researchers to develop analyzers
in an e�cient way to study traces generated by the
tracing JVM.

The Shade tool [4] from Sun is used to obtain
SPARC traces for the JVM98 programs (to study the
behavior of SPEC JVM98 at the SPARC machine code
level). Existing analyzers and new analyzers are used
to study the instruction mix of the Java applications.
Since Java runs in an interpreted environment, these
measurements re
ect the combined properties of the
interpreter (JVM) and the application (SPEC JVM98).

3 Analysis and Results
3.1 Bytecode Level

The �rst characteristic we looked at is the bytecode in-
struction mix. The JVM instruction set, being stack-
oriented, is signi�cantly di�erent from conventional
register based architectures. Hence �rst we identi�ed a
basic classi�cation for the instruction types: Table 2
shows the classi�cation of the bytecode instructions
based on the operation that they perform.

Based on the previous classi�cation, the bytecode
instruction mix of all programs in the SPEC JVM98
benchmark suite is obtained and presented in Table 3.
The total bytecode count ranged from 2 million for db

to approximately a billion for compress. Most of the
benchmarks showed similar distributions for the di�er-
ent instruction types. As seen, most of the instructions
are of type load, which on the average accounts for
35.5% of the total number of bytecodes executed. The
next most frequent instructions are constant pool and
method calls with average frequencies of 21% and 11%
respectively. From an architectural point of view, this
means that in the Java run-time environment, most of
the operations consist of transfers of data elements to
and from the memory space allocated for local vari-
ables and the one allocated for the stack. Comparing
it with the benchmark 126.gcc from the SPEC CPU95
suite that has roughly 25% of memory access opera-
tions when run on a SPARC V.9 architecture, the JVM
places greater stress on the memory system. Conse-
quently, we expect that techniques such as instruction
folding proposed in [5] for Java processors and instruc-
tion combining proposed in [6] for JIT compilers can
improve the overall performance of Java applications.

Figure 1: Dynamic Method Size

The second characteristic we studied was the dy-
namic size of a method. Invoking methods in Java is
expensive, as it requires the setting up of an execution
environment and a new stack for each new method [7].
Figure 1 shows the method sizes that was seen for the
di�erent benchmarks. A tri-nodal distribution is ob-
served, where most of the methods are either 1, 10
or 27 bytecodes long. This seems to be a characteris-
tic of the runtime environment and can be attributed
to a frequently used library. However the existence of
methods of just one bytecode, indicates the presence of
wrapper methods to implement features that exist in
the Java language like private and protected methods
or interfaces. It is therefore a characteristic of the Java
language and not of the JVM speci�cation.

Further analysis of the traces show that a few unique
bytecodes constitute most of the dynamic bytecode
stream. In most benchmarks, fewer than 45 distinct
bytecodes constitute 90% of the executed bytecodes.
The list of these bytecodes that dominate the dynamic
bytecode trace is available in [8]. It is observed that
memory access and memory allocation related byte-



Instruction BENCHMARKS

Group compress jess db javac mpegaudio mtrt jack

Constant Pool 23.3% 21.6% 16.8% 14.6% 17.1% 20.69% 32.0%
Stack 8.8% 3.5% 7.7% 5.8% 7.1% 4.1% 13.5%
Load 34.3% 35.5% 37.8% 37.9% 44.2% 28.2% 30.9%
Store 10.6% 6.6% 8.0% 7.5% 8.3% 3.5% 2.1%
ALU 11.2% 6.1% 8.8% 12.8% 17.1% 7.8% 5.8%

Branch 6.1% 9.6% 10.2% 8.6% 3.4% 5.1% 11.0%
Jump 0.4% 1.1% 1.1% 1.3% 0.4% 0.8% 0.5%

Method Calls 5.4% 15.7% 9.2% 10.8% 2.5% 29.3% 4.1%
Table 0.0% 0.3% 0.3% 0.7% 0.0% 0.7% 0.0%

Total Bytecodes 954990234 8126332 2035798 5958654 115748387 50683565 175740325

Table 3: Instruction Mix at the Bytecode level

Benchmark # bytecodes
jess 48
db 45
javac 45
mpegaudio 36
mtrt 39
jack 22

Table 4: Number of distinct bytecodes that account for
90% of the dynamic count

codes dominate the bytecode stream of all the bench-
marks. This also hints that if the instruction cache can
hold the JVM interpreter code corresponding to these
bytecodes, the instruction cache performance will be
good.

Another bytecode characteristic we studied is the
method reuse factor for the di�erent data sets. The
method reuse factor can be de�ned as the ratio of
method calls to number of methods, which are pre-
sented in Table 5. The performance bene�ts that can
be obtained from using a JIT compiler is directly pro-
portional to the method reuse factor, since the cost of
compilation is amortized over multiple calls in JIT ex-
ecution. Table 5 also shows that the static size of the
benchmarks remain constant across the di�erent data
sets, although the dynamic instruction count increases
for the bigger data sets.

3.2 SPARC Machine Code Level
Figure 2 shows the instruction mix for the benchmarks.
The instructions are broken into control transfer, load
and store instructions. Loads are observed to have a
high occurrence in all the benchmarks. It must be kept
in mind that these loads include loads performed by
the Java application to load its data in addition to the
loads performed by the JVM to fetch each bytecode
during interpretation.

The control transfer instructions can be further clas-
si�ed into branches, jump and call instructions. Fig-
ure 3 shows the percentage of these classes of instruc-
tions (branch, jump and call). The JVM interpreter
is implemented using a large switch statement and ev-
ery bytecode results in a control transfer to the corre-

Figure 2: Breakdown of the Instruction Mix into Con-
trol Transfer Instructions, Loads and Stores.

Figure 3: Breakdown of the Control Transfer Instruc-
tions into Branches, Calls and Jumps.

sponding case where the routine to decode the byte-
code is de�ned by the JVM. Table 6 shows the number
of SPARC instructions that are generated per byte-
code. One bytecode is seen to result in an average
of 25 SPARC machine level instructions (10 to 42 in
the various benchmarks). We also show the number of
control transfer instructions, loads and stores that were
generated per bytecode in Table 6. It is seen that one
bytecode results in an average of 4.7 control transfer
instructions and 8 memory access instructions.

4 Conclusions
The Java language paradigm is gaining wide accep-
tance as a mechanism to transmit portable code over
a network. The JVM is the component of the Java
language speci�cation responsible for the portability
of the code. In this paper, we identi�ed several impor-
tant execution characteristics of a suite of Java bench-



s1 s10 s100

benchmarks calls methods calls methods calls methods
compress 17330744 577 18170275 578 14566857 449

db 65379 642 1610941 645 91753107 658
jack 2318110 1230 4621508 1233 39172145 1240

mpeg 954605 843 8289656 846 93046042 844
jess 414349 1222 5697628 1313 95957670 1375

javac 213243 1384 2515940 3142 54503910 3325
mtrt 1906112 781 7031487 785 71168982 796

Table 5: Total number of dynamic method calls and methods for the three data sets

Benchmarks Inst CTI loads stores

compress 10.91 1.60 3.64 1.15
jess 31.93 6.24 7.32 2.66
db 42.64 8.71 8.65 3.26

javac 33.37 6.58 7.32 2.64
mpegaudio 11.35 1.65 3.61 1.09

mtrt 30.22 5.63 7.61 2.67
jack 15.18 2.63 4.42 1.46

Table 6: Instructions Executed per Bytecode
The total dynamic instructions (Inst), control transfer instruc-
tions (CTI), loads and stores generated for each bytecode is
shown.

marks both from a bytecode perspective and at the
SPARC machine code level. The analysis at bytecode
level points to processor features required in a Java
processor or in a software JVM, while the analysis at
the SPARC machine code level indicates the need for
(or against) specialized mechanisms for general pur-
pose processors interpreting Java code. The bytecode
analysis also helps to explain many observations at the
machine code level. The major observations based on
our investigation are summarized below.

1. It is observed that less than 45 out of the 250 Java
bytecodes constitute 90% of the bytecode stream.
Optimizations targeted at these bytecodes may
prove to be e�ective, although Amdahl's law has
to be considered.

2. One bytecode was seen to translate into approxi-
mately 25 SPARC instructions on the average. On
an average, each bytecode results in 8 memory ac-
cess instructions and more than 4 control transfer
instructions.

3. The instruction mix showed that there was a high
frequency of memory references. The average per-
centage of loads was 35% at the bytecode level and
26% at the SPARC machine code level. The large
percentage of load instructions stresses the impor-
tance of a good memory system design in Java
systems.

4. The most common dynamically invoked methods
were seen to be either 1, 10 or 27 bytecodes long.
It was also seen that 45% of all dynamic methods
were less than 9 bytecodes or 16 bytes long.

We believe that this paper provides some valuable
insight into the behavior of Java applications on mod-
ern processors. The analysis at the SPARC machine
code level is the combined e�ect of the JVM interpreter
and the Java applications and the observations should
not be interpreted as being solely due to Java language
features.

Acknowledgments
We appreciate the support by Sun Microsystems on this
project. A special acknowledgment is made to the Java De-
velopment team for giving us access to the source code for
the JDK 1.1.6. The authors are supported by the National
Science Foundation under Grants EIA-9807112 and CCR-
9796098, the State of Texas Advanced Technology Program
grant #403, and by Dell, Intel, Microsoft and IBM.

References

[1] N.Vijaykrishnan, N.Ranganathan, and R.Gadekarla,
\Object-Oriented Architectural Support for a Java Pro-
cessor," in Proceedings of ECOOP'98, the 12th Eu-

ropean Conference on Object-Oriented Programming,
1998.

[2] T.H Romer, D. Lee, G. M. Voelker, A. Wolman, W. A.
Wong, J-L. Baer, B. N. Bershad and H. M. Levy, \The
Structure and Performance of Interpreters," in Proceed-

ings of ASPLOS VII, pp. 150{159, 1996.

[3] T. Newhall and B. Miller, \Performance Measurement
of Interpreted Programs," in Proceedings of Euro-Par,
1998.

[4] Robert F. Cmelik and David Keppel, \Shade: A Fast
Instruction-Set Simulator for Execution Pro�ling, SMLI
TR-93-12," tech. rep., Sun Microsystems Inc, 1993.

[5] J. O'Conner and M. Tremblay, \PicoJava-I: The Java
Virtual Machine in Hardware," in Proceedings of Micro,
March 1997.

[6] HotSpot: A new breed of virtual machine,
http://www.javaworld.com/jw-03-1998/jw-03-
hotspot.html?030998.

[7] F. Y. T. Lindholm, The Java Virtual Machine Speci�-

cation. Addison Wesley, 1997.

[8] R. Radhakrishnan, J. Rubio and L. John, \Chac-
terization of Java Applications at Bytecode and
Machine Code Levels," Tech. Rep. TR-LCA080599.
http://www.ece.utexas.edu/projects/ece/lca/ps/TR-
LCA080599.ps.


