
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

Program Design in the UNIX Environment

By R. PIKE* and B. W. KERNIGHAN*

(Manuscript received October 11, 1983)

Much of the power of the UNIX'" operating system comes from a style of
program design that makes programs easy to use and, more importantly, easy
to combine with other programs. This style is distinguished by the use of
software tools, and depends more on how the programs fit into the program­
ming environment-how they can be used with other programs-than on how
they are designed internally. But as the system has become commercially
successful and has spread widely, this style has often been compromised, to
the detriment of all users. Old programs have become encrusted with dubious
features. Newer programs are not always written with attention to proper
separation of function and design for interconnection. This paper discusses
the elements of program design, showing by example good and bad design,
and indicates some possible trends for the future.

I. INTRODUCTION

The UNIX operating system has become a great commercial success,
and is likely to be the standard operating system for microcomputers
and some mainframes in the coming years.

There are good reasons for this popularity. One is portability: the
operating system kernel and the applications programs are written in
the programming language C, and thus can be moved from one type

* AT&T Bell Laboratories.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1595

of computer to another with much less effort than would be involved
in recreating them in the assembly language of each machine. Essen­
tially, the same operating system therefore runs on a wide variety of
computers, and users need not learn a new system when new hardware
comes along. Perhaps more important, vendors who sell the UNIX
system need not provide new software for each new machine; instead,
their software can be compiled and run without change on any hard­
ware, which makes the system commercially attractive. There is also
an element of zealotry: users of the system tend to be enthusiastic and
to expect it wherever they go; the students who used the UNIX system
in universities a few years ago are now in the job market and often
demand it as a condition of employment.

But the UNIX system was popular long before it was even portable,
let alone a commercial success. The reasons for that are more inter­
esting.

Except for the initial PDP-7* version, the UNIX system was written
for the PDP-ll* computer, which was deservedly very popular. The
PDP-ll computers were powerful enough to do real computing, but
small enough to be affordable by small organizations such as academic
departments in universities.

The early UNIX system was smaller but more effective, and tech­
nically more interesting, than competing systems on the same hard­
ware. It provided a number of innovative applications of computer
science, showing the benefits to be obtained by a judicious blend of
theory and practice. Examples include the yacc parser-generator, the
di f f file comparison program, and the pervasive use of regular expres­
sions to describe string patterns. These led in turn to new program­
ming languages and interesting software for applications like program
development, document preparation, and circuit design.

Since the system was modest in size, and since essentially everything
was written in C, the software was easy to modify, to customize for
particular applications, or merely to support a view of the world
different from the original. (This ease of change is also a weakness, of
course, as evidenced by the plethora of different versions of the
system.)

Finally, the UNIX system provided a new style of computing, a new
way of thinking of how to attack a problem with a computer. This
style was based on the use of tools: using programs separately or in
combination to get a job done, rather than doing it by hand, by
monolithic self-sufficient subsystems, or by special-purpose, one-time
programs. This has been much discussed in the literature, so we don't
need to repeat it here; see Ref. 1, for example.

* Trademark of Digital Equipment Corporation.

1596 TECHNICAL JOURNAL, OCTOBER 1984

11/3/71 CAT (I)

NAME 9~~ -- concatenate and print

SYNOPSIS ~~~ !!!~! ...
DESCRIPTION cat reads each file in sequence and writes it on

the standard output stream. Thus:

is about the easiest way to print a file. Also:

~~~ !!!~! !!!~~ >!!!~~

is about the easiest way to concatenate files.

If no input file is given cat reads from the
standard input file. ---

FILES

SEE ALSO pr, cp

DIAGNOSTICS none; if a file cannot be found it is ignored.

BUGS

OWNER ken, dmr

Fig. I-Manual page for cat, UNIX 1st edition, November 1971.

II. AN EXAMPLE: CAT

The style of use and design of the tools on the system are closely
related. The style is still evolving, and is the subject of this essay: in
particular, how the design and use of a program fit together, how the
tools fit into the environment, and how the style influences solutions
to new problems. The focus of the discussion is a single example, the
program cat, which concatenates a set of files onto its standard output.
Cat is simple, both in implementation and in use; it is essential to the
UNIX system, and it is a good illustration of the kinds of decisions
that delight both supporters and critics of the system. (Often a single
property of the system will be taken as an asset or as a fault by
different audiences; our audience is programmers, because the UNIX
environment is designed fundamentally for programming.) Even the
name cat is typical of UNIX program names: it is short, pronounce­
able, but not conventional English for the job it does. (For an opposing
viewpoint, see Ref. 2.) Most important, though, cat in its usages and
variations exemplifies UNIX program design style and how it has
been interpreted by different communities.

Figure 1 is the manual page for cat from the UNIX 1st edition*
manual. Evidently, cat copies its input to its output. The input is
normally taken from a sequence of one or more files, but it can come

* The 1st through 7th editions of the UNIX operating system are research versions
of the system. Systems I through V are commercial releases of the UNIX system.

PROGRAM DESIGN 1597



from the standard input. The output is the standard output. The
manual suggested two uses, the general file copy:

cat file 1 f ile2 >f ile3

and printing a file on the terminal:

cat file

The general case is certainly what was intended in the design of the
program. Output redirection (provided by the> operator, implemented
by the UNIX shell) makes ca t a fine general-purpose file concatenator
and a valuable adjunct for other programs, which can use cat to
process filenames, as in:

cat file file2 ... Iother-program

The fact that cat will also print on the terminal is a special case.
Perhaps surprisingly, in practice it turns out that the special case is
the main use of the program.*

The design of cat is typical of most UNIX programs: it implements
one simple but general function that can be used in many different
applications (including many not envisioned by the original author).
Other commands are used for other functions. For example, there are
separate commands for file system tasks like renaming files, deleting
them, or telling how big they are. Other systems instead lump these
into a single "file system" command with an internal structure and
command language of its own. (The PIP file copy program found on
CP/Mt or RSX-ll* operating systems is an example.) That approach
is not necessarily worse or better, but it is certainly against the UNIX
philosophy. Unfortunately, such programs are not completely alien to
the UNIX system-some mail-reading programs and text editors, for
example, are large self-contained "subsystems" that provide their own
complete environments and mesh poorly with the rest of the system.
Most such subsystems, however, are usually imported from or inspired
by programs on other operating systems with markedly different
programming environments.

III. CAT-v

There are some significant advantages to the traditional UNIX
system approach. The most important is that the surrounding envi-

* The use of cat to feed a single input file to a program has to some degree
superseded the shell's < operator, which illustrates that general-purpose constructs­
like cat and pipes-are often more natural than convenient special-purpose ones.

t Trademark ofDigital Research Inc.
*Trademark ofDigital Equipment Corporation.

1598 TECHNICAL JOURNAL, OCTOBER 1984



ronment-the shell and the programs it can invoke-provides a uni­
form access to system facilities. File name argument patterns are
expanded by the shell for all programs, without prearrangement in
each command. The same is true of input and output redirection.
Pipes are a natural outgrowth of redirection. Rather than decorate
each command with options for all relevant pre- and post-processing,
each program expects as input, and produces as output, concise and
header-free textual data that connect well with other programs to do
the rest of the task at hand. It takes some programming discipline to
build a program that works well in this environment-primarily, to
avoid the temptation to add features that conflict with or duplicate
services provided by other commands-but it's well worthwhile.

Growth is easy when the functions are well separated. For example,
the 7th edition shell was augmented with a backquote operator that
converts the output of one program into the arguments to another, as
III

cat cat f ilelist

No changes were made in any other program when this operator was
invented; because the backquote is interpreted by the shell, all pro­
grams called by the shell acquire the feature transparently and uni­
formly. If special characters like backquotes were instead interpreted,
even by calling a standard subroutine, by each program that found the
feature appropriate, every program would require at least recompila­
tion whenever someone had a new idea. Not only would uniformity be
hard to enforce, but experimentation would be harder because of the
effort of installing any changes.

The UNIX 7th edition system introduced two changes in cat. First,
files that could not be read, either because of denied permissions or
simple nonexistence, were reported rather than ignored. Second, and
less desirable, was the addition of a single optional argument -u, which
forced cat to unbuffer its output (the reasons for this option, which
has disappeared again in the 8th edition of the system, are technical
and irrelevant here.)

But the existence of one argument was enough to suggest more, and
other versions of the system soon embellished cat with features. This
list comes from cat on the Berkeley distribution of the UNIX system:

-s Strip multiple blank lines to a single instance.
-n Number the output lines.
-b Number only the nonblank lines.
-v Make nonprinting characters visible.
-ve Mark ends of lines.
-vt Change representation of tab.

PROGRAM DESIGN 1599



In System V, there are similar options and even a clash of naming:
-s instructs cat to be silent about nonexistent files. But none of these
options is an appropriate addition to cat; the reasons get to the heart
of how UNIX programs are designed and why they work well together.

It's easy to dispose of (Berkeley) -s, -n, and -b: all of these jobs are
readily done with existing tools like sed and awk. For example, to
number lines, this awk invocation suffices:

awk ' I print NR "\ t" $0 I' filenames

If line numbering is needed often, this command can be packaged
under a name like 1 inenumber and put in a convenient public place.
Another possibility is to modify the pr command, whose job is to
format text such as program source for output on a line printer.
Numbering lines is an appropriate feature in pr; in fact UNIX System
V pr has a -n option to do so. There never was a need to modify cat;
these options are gratuitous tinkering.

But what about -v? That prints nonprinting characters in a visible
representation. Making strange characters visible is a genuinely new
function for which no existing program is suitable. ("sed -n 1", the
closest standard possibility, aborts when given very long input lines,
which are more likely to occur in files containing nonprinting char­
acters.) So isn't it appropriate to add the -v option to cat to make
strange characters visible when a file is printed?

The answer is "No". Such a modification confuses what cat' s job
is-concatenating files-with what it happens to do in a common
special case, showing a file on the terminal. A UNIX program should
do one thing well, and leave unrelated tasks to other programs. Cat' s
job is to collect the data in files. Programs that collect data shouldn't
change the data; cat therefore shouldn't transform its input.

The preferred approach in this case is a separate program that deals
with nonprintable characters. We called ours vis (a suggestive, pro­
nounceable, non-English name) because its job is to make things
visible. As usual, the default is to do what most users will want-make
strange characters visible-and as necessary include options for vari­
ations on that theme. By making vis a separate program, related
useful functions are easy to provide. For example, the option -s strips
out (i.e., discards) strange characters, which is handy for dealing with
files from other operating systems. Other options control the treatment
and format of characters like tabs and backspaces that mayor may
not be considered strange in different situations. Such options make
sense in vis because its focus is entirely on the treatment of such
characters. In cat, they require an entire sublanguage within the -v
option, and thus get even further away from the fundamental purpose
of that program. Also, providing the function in a separate program

1600 TECHNICAL JOURNAL, OCTOBER 1984



makes convenient options such as -s easier to invent, because it
isolates the problem as well as the solution.

One possible objection to separate programs for each task is effi­
ciency. For example, if we want numbered lines and visible characters,
it is probably more efficient to run the one command

cat -n -v file

than the two-element pipeline

linenumber file I vis

In practice, however, cat is usually used with no options, so it makes
sense to have the common cases be the efficient ones. The current
research version of the cat command is actually about five times
faster than the Berkeley and System V versions because it can process
data in large blocks instead of the byte-at-a-time processing that might
be required if an option is enabled. Also, and this is perhaps more
important, it is hard to imagine any of these examples being the
bottleneck of a production program. Most of the real time is probably
taken waiting for the user's terminal to display the characters, or even
for the user to read them.

Separate programs are not always better than wider options; which
is better depends on the problem. Whenever one needs a way to
perform a new function, one faces the choice of whether to add a new
option or write a new program (assuming that none of the program­
mable tools will do the job conveniently). The guiding principle for
making the choice should be that each program does one thing. Options
are appropriately added to a program that already has the right
functionality. If there is no such program, then a new program is
called for. In that case, the usual criteria for program design should
be used: the program should be as general as possible, its default
behavior should match the most common usage, and it should coop­
erate with other programs.

IV. FAST TERMINAL LINES

Let's look at these issues in the context of another problem, dealing
with fast terminal lines. The first versions of the UNIX system were
written in the days when 150 baud was "fast" and all terminals used
paper. Today, 9600 baud is typical, and hard-copy terminals are rare.
How should we deal with the fact that output from programs like cat
scrolls off the top of the screen faster than one can read it?

There are two obvious approaches. One is to tell each program about
the properties of terminals, so it does the right thing (whether by
option or automatically). The other is to write a command that handles
terminals, and leave most programs untouched.

PROGRAM DESIGN 1601



An example of the first approach is Berkeley's version of the Is
command, which lists the file names in a directory. Let us call it Ise
to avoid confusion. The 7th edition 1 s command lists file names in a
single column, so for a large directory, the list of file names disappears
off the top of the screen at great speed. The 1s c command prints in
columns across the screen (which is assumed to be 80 columns wide),
so there are typically four to eight times as many names on each line,
and thus the output usually fits on one screen. The option -1 can be
used to get the old single-column behavior.

Surprisingly, Ls c operates differently if its output is a file or pipe:

Ise

produces output different from

Ls c I cat

The reason is that 1s c begins by examining whether its output is a
terminal, and prints in columns only if it is. By retaining single­
column output to files or pipes, Ise ensures compatibility with pro­
grams like grep or we, which expect things to be printed one per line.
This ad hoc adjustment of the output format depending on the desti­
nation is not only distasteful, it is unique-no standard system com­
mand has this property.

A more insidious problem with Ise is that the columnation facility,
which is actually a useful, general function, is built in and thus
inaccessible to other programs that could use a similar compression.
Programs should not attempt special solutions to general problems.
The automatic columnation in Ise is reminiscent of the "wild cards"
found in some systems that provide file name pattern matching only
for a particular program. The experience with centralized processing
of wild cards in the system shell shows overwhelmingly how important
it is to centralize the function where it can be used by all programs.

One solution for the 15 problem is obvious-a separate program for
columnation, so that columnation into, say, five columns is just

Is 15
It is easy to build a first-draft version with the multicolumn option of
pr. The commands 2, 3, etc., are all links to a single file:

pr -$0 -t -11 $*

$0 is the program name (2, 3, etc.), so -$0 becomes -n, where n is
the number of columns that pr is to produce. The other options
suppress the normal heading, set the page length to one line, and pass
the arguments on to pr. This implementation is typical of the use of
tools-it takes only a moment to write, and it serves perfectly well for

1602 TECHNICAL JOURNAL, OCTOBER 1984



most applications. If a more general service is desired, such as auto­
matically selecting the number of columns for optimal compaction, a
Cprogram is probably required, but the one-line implementation above
satisfies the immediate need and provides a base for experimentation
with the design of a fancier program, should one become necessary.

Similar reasoning suggests a solution for the general problem of
data flowing off screens (columnated or not): a separate program to
take any input and print it a screen at a time. Such programs are by
now widely available, under names like pg and more. This solution
affects no other programs, but can be used with all of them. As usual,
once the basic feature is right, the program can be enhanced with
options for specifying screen size, backing up, searching for patterns,
and anything else that proves useful within that basic job.

There is still a problem, of course. If the user forgets to pipe output
into pg, the output that goes off the top of the screen is gone. It would
be desirable if the facilities of pg were always present without having
to be requested explicitly.

There are related useful functions that are typically only available
as part of a particular program, not in a central service. One example
is the history mechanism provided by some versions of the UNIX
shell: commands are remembered, so it's possible to review and repeat
them, perhaps with editing. But why should this facility be restricted
to the shell? (It's not even general enough to pass input to programs
called by the shell; it applies to shell commands only.) Certainly other
programs could profit as well; any interactive program could benefit
from the ability to re-execute commands. More subtly, why should the
facility be restricted to program input? Pipes have shown that the
output from one program is often useful as input to another. With a
little editing, the output of commands such as Is or make can be
turned into commands or data for other programs.

Another facility that could be usefully centralized is typified by the
editor escape in some mail commands. It is possible to pick up part of
a mail message, edit it, and then include it in a reply. But this is all
done by special facilities within the mail command and so its use is
restricted.

Each such service is provided by a different program, which usually
has its own syntax and semantics. This is in contrast to features such
as pagination, which is always the same because it is only done by one
program. The editing of input and output text is more environmental
than functional; it is more like the shell's expansion of file name
metacharacters than automatic numbering of lines of text. But since
the shell does not see the characters sent as input to the programs, it
cannot provide such editing. The emacs editor provides a limited form
of this capability, by processing all system command input and output,

PROGRAM DESIGN 1603



but this is expensive, clumsy, and subjects the users to the complexities
and vagaries of yet another massive subsystem (which isn't to criticize
the inventiveness of the idea).

A potentially simpler solution is to let the terminal or terminal
interface do the work, with controlled scrolling, editing and retrans­
mission of visible text, and review of what has gone before. We have
used the programmability of the Blit terminal"-a programmable
bitmap graphics display-to capitalize on this possibility, to good
effect.

The Blit uses a mouse to point to characters on the display, which
can be edited, rearranged, and transmitted back to the UNIX system
as though they had been typed on the keyboard. Because the terminal
is essentially simulating typed input, the programs are oblivious to
how the text was created; all the features discussed above are provided
by the general editing capabilities of the terminal, with no changes to
the UNIX programs.

There are some obvious direct advantages to the Blit's ability to
process text under the user's control. Shell history is trivial: commands
can be selected with the mouse, edited if desired, and retransmitted.
Since from the terminal's viewpoint all text on the display is equiva­
lent, history is limited neither to the shell nor to command input.
Because the Blit provides editing, most of the interactive features of
programs like mail are unnecessary; they are done easily, transpar­
ently, and uniformly by the terminal.

The most interesting facet of this work, however, is the way it
removes the need for interactive features in programs; instead, the
Blit is the place where interaction is provided, much as the shell is the
program that interprets file name matching metacharacters. Unfor­
tunately, of course, programming the terminal demands access to a
part of the environment that is off limits to most programmers, but
the solution meshes well with the environment and is appealing in its
simplicity. If the terminal cannot be modified to provide the capabil­
ities, a user-level program or perhaps the UNIX system kernel itself
could be modified fairly easily to do roughly what the Blit does, with
similar results.

v. CONCLUSIONS

The key to problem solving on the UNIX system is to identify the
right primitive operations and to put them at the right place. UNIX
programs tend to solve general problems rather than special cases. In
a very loose sense, the programs are orthogonal, spanning the space
of jobs to be done (although with a fair amount of overlap for reasons
of history, convenience, or efficiency). Functions are placed where
they will do the most good: there shouldn't be a pager in every program

1604 TECHNICAL JOURNAL, OCTOBER 1984



that produces output any more than there should be file name pattern
matching in very program that uses file names.

One thing that the UNIX system does not need is more features. It
is successful in part because it has a small number of good ideas that
work well together. Merely adding features does not make it easier for
users to do things-it just makes the manual thicker. The right
solution in the right place is always more effective than haphazard
hacking.

REFERENCES

1. B. W. Kernighan and R. Pike, The UNIX Programming Environment, Englewood
Cliffs, NJ: Prentice-Hall, 1984.

2. D. Norman, "The Truth about UNIX," Datamation, 27, No. 12 (November 1981).
3. R. Pike, "The UNIX System: The Blit: A Multiplexed Graphics Terminal," AT&T

Bell Lab. Tech. J., this issue.

AUTHORS
Brian W. Kernighan, B.A.Sc., 1964, University of Toronto; Ph.D., 1969,
Princeton University; AT&T Bell Laboratories, 1969-. Mr. Kernighan has
been involved with heuristics for combinatorial optimization problems, pro­
gramming methodology, software for document preparation, and network
optimization. Mr. Kernighan is Head of the Computing Structures Research
department, where he has worked in the areas of combinatorial optimization
and heuristics, design automation, document preparation systems, program­
ming languages, and software tools. Member, IEEE and ACM.

Rob Pike, AT&T Bell Laboratories, 1980-. As a Member of Technical Staff,
Mr. Pike's best-known work at Bell Laboratories has been as co-developer of
the Blit bitmap graphics terminal. His research interests include statistical
mechanics and cosmology; his practical interests involve interactive graphics
hardware and software.

PROGRAM DESIGN 1605


