AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

Debugging C Programs With the Blit

By T. A. CARGILL*
{Manuscript received August 1, 1983)

The Blit terminal is changing the way we debug C programs. Using multiple
virtual terminals on the Blit, a programmer can interact simultaneously with
several of the tools needed when debugging. This makes existing tools more
useful and influences the design of new tools. In particular, the Blit cleanly
separates the programmer’s communication with a debugger from communi-
cation with the program being debugged. Moreover, jof £, a debugger for C
programs that run in the Blit, demonstrates the advantage of operating a
debugger asynchronously with the subject process and the effectiveness of a
source-level user interface based on pop-up menus. The graphics user interface
supports “pointer chasing” through arbitrary data structures and graphical
display of graphics data objects.

I. INTRODUCTION

This paper begins with a synopsis of debugging technology (see
surveys published by Model and Myers)."? This is followed by a
discussion of the Blit terminal’s effect on debugging C programs
running under the UNIX™ operating system and then an example of
joff, a debugger for C programs running on the Blit itself. The
observations are pertinent to other languages used on UNIX systems,
but only C has been used on the Blit. For programs on a UNIX system

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1633

host, the multiplexed virtual terminals of the Blit increase the effec-
tiveness of debugging with the standard tools. The Blit’s hardware
and software make its debugger quite unlike the debuggers used for
UNIX programs. Several small scenarios illustrate tools and tech-
niques used in debugging. (These examples are unrealistic and there-
fore require the reader to extrapolate to the effect in real debugging.)
Some appreciation of the Blit terminal® and a reading knowledge of
C* are assumed.

Il. DEBUGGING TOOLS

Debugging is a complicated activity. A program isn’t doing what it
should, and the programmer has to find out what it is doing, so that
the problem may be rectified or documented. Locating and understand-
ing the errant part of the program is usually much harder than deciding
how to correct the problem.

Initially, the programmer does not even know where to look; only
the symptoms are known—the program’s external behavior. The pro-
grammer constructs hypotheses about what may be wrong in the
program and devises ways to test them. The results of each test are
clues about the program that lead to other hypotheses. The more
specific the hypotheses become, the more information the programmer
needs about the internal behavior of the program, which is not nor-
mally observable.

A debugger is a tool for observing the internal behavior of a program.
Generally, a debugger lets the programmer examine the state of the
program at some point in its execution. Debuggers present the state
of the subject program in different ways. They vary in the level of
abstraction at which the program is viewed, from source programming
language to machine language, and in the degree of user interaction:
e The most primitive debuggers give dumps: they print the contents

of every memory location in the address space of the program at the

time of a failure. The subject program executes no further; there is
only information about its final state.

e Other debuggers trace the program: they print messages about
selected events that occur in the execution of the program. Typical
events are variable assignments and function calls. If the set of
events must be fixed when the program is compiled or starts to run,
the debugger is a batch tool, even if it runs in time sharing.

o Interactive debuggers involve the programmer in the execution of
the program: when an event occurs the programmer enters a dialogue
with the debugger and interactively examines the state of the
program or modifies the set of events before restarting the program.
The interactive nature is a great advantage; it is only after seeing
the values of some variables that the programmer knows where to

1634 TECHNICAL JOURNAL, OCTOBER 1984

look for other critical data. Each run of the subject yields more

information than it would with a batch debugger.

The characteristics of a debugger are most influenced by the archi-
tecture of the machine executing the subject program; the machine
architecture determines the ease with which the debugger can access
and control the internal state of the program. An interpreter, a
software machine, can easily provide ample support for a debugger.
Hardware processors usually provide much less support. For example,
with an interpreter it may be easy to implement a class of events
based on changes in the values of variables by invoking the debugger
after the completion of each statement. Hardware processors vary but
may provide no more than a breakpoint event, halting the program
when it reaches a particular instruction.

Debuggers are also influenced by the architecture of their operating
environment. Under an operating system that permits users to execute
only a single process, the debugger and its subject must be merged
into one process. Several reasons make it undesirable to combine the
debugger and the subject into a single process:

1. The debugger’s presence in the subject process may result in
different behavior, even to the point where the bug is no longer
apparent.

2. The debugger is not protected; the subject process may overwrite
it.

3. If process address space is limited, there may not be room for the
debugger.

4. If the debugger and the subject must be bound before the subject
starts to execute, the debugger cannot be invoked after something goes
wrong in a production program.

If possible, it is therefore better to make the debugger a separate
process, supported by operating system primitives for accessing the
subject process.

These reasons for making the debugger a separate process have
more to do with the implementation of the debugger than with its use.
The programmer still perceives the debugger and subject as united if
communication with them is through a single terminal. To the pro-
grammer, the drawbacks of a shared terminal are:

1. The process involved with each line of input and output must be
determined.

2. The shared terminal may not behave properly if the debugger
and the subject require it to operate in different modes.

3. Even in the same mode, Input/Output (I/O) may not interleave
properly because of unflushed buffers, cursor control, and so on.

The solution is to use two terminals, one for the debugger and one for
the subject. But whether the two processes can drive separate terminals

DEBUGGING WITH BLIT TERMINAL 1635

depends on the operating system again, and also on the availability of
terminals.

A debugger is only one of the tools used in debugging. The program-
mer uses a full set of software tools to manipulate a great deal of
information: the source program, data files, test results, other pro-
grams, subroutine libraries, documentation, news bulletins, mail mes-
sages, etc. Even though experienced programmers write programs with
debugging in mind, they can rarely plan much of how to tackle a
particular bug. It is hard to anticipate the course of a debugging session
or what information will be needed; the results of each step determine
where to look, what to consider, and what tool to use next. A dextrous
programmer may rapidly apply a wide variety of tools.

IN. USING THE BLIT TO DEBUG UNIX PROGRAMS

The Blit can multiplex a number of UNIX system shells.®> Each
shell runs in its own layer, a rectangular region of the screen that, by
default, behaves like an ASCII terminal. The shells run asynchro-
nously, writing to their respective layers at any time, ignorant of the
multiplexing. The user creates, moves, reshapes, and deletes layers
with a graphics mouse. The mouse also controls the way in which the
layers overlap, and it selects the current layer, to which input from
the keyboard is directed. Any obscured portion of an overlapped layer
remains active; it can be written to at any time, and is restored when
the layers are rearranged to make it reappear. The effect, for the user
and the UNIX system alike, is as though the user had an array of
terminals. A layer can also be tailored for an application with an
arbitrary graphics program, down loaded from the UNIX system to
run in the Blit’s processor. For example, jim, a mouse-based multifile
text editor, down loads its user interface process to a Blit layer.?

The Blit has a considerable impact on debugging, even when no
debugger is used, as in the ever-popular method of debugging C
programs by inserting print statements. When a program is being
debugged, the ability to run multiple streams of UNIX system com-
mands simultaneously is useful because the programmer has to per-
form so many different tasks. The subject program can run in one
layer while the source text of the program is viewed in another layer.
Perusing the source text and following the behavior of the subject
program simultaneously is a great help, even if the text editor only
displays text from one file at a time. The text editor written for the
Blit, jim, makes it possible to flip rapidly among as many as 20 files,
and arrange the files in overlapping windows within its layer. In a
layer occupying less than half of the Blit’s 800 X 1024 pixel display,
jim can show a block of source text with a function call from one

1636 TECHNICAL JOURNAL, OCTOBER 1984

source file, the body of the called function from another, and a set of
definitions from a common header file.

None of the context of an editor or the subject program is lost when
other tools must be used. Examples of the kind of tools that might be
needed at any time are:

grep—to find occurrences of an identifier,

diff—to see how a file has changed,

man—to obtain a section of the UNIX system manual.

If executing a command takes a long time, the programmer need not
wait for output before ‘doing something else; each shell and tool
responds independently. Without some discipline this can become
chaotic, and it takes a little practice to use the Blit’s layers to the best
effect. Many programmers establish an idiosyncratic layout of the Blit
screen, with fixed tools in layers at fixed positions. It is then easy to
keep track of a few extra layers, handling other tasks as they arise.

Where they would not otherwise work, print statements can still be
used for debugging on a Blit. Consider using print statements to debug
a conventional UNIX system screen editor running behind a Blit
layer. (A Blit layer can be programmed to emulate an arbitrary ASCII
terminal.) As the editor moves the cursor around the screen, print
statement output will overwrite editor text and vice versa; the editor
also will lose track of the cursor’s location. However, on the Blit the
trace can be directed to a different layer, as follows:

1. The debugging output is written to another stream, say the
standard error device:

fprintf(stderr, "keyboard() = %o\n", c);

2. The “pseudo-teletype” device associated with the layer to receive
the trace is determined by using the tty command in that layer:

$ tty

/dev/pt/pt26

3. The editor’s standard error output is directed to that device:
$ editor 2>/dev/pt/pt26

The editor now executes in one layer and the trace output scrolls by
in another layer; there is no interference. Flow control characters from
the keyboard can stop and start the trace output to prevent it from
scrolling away too quickly. Of course stopping the output from the
trace will not stop the editor until it blocks on full buffers.

In this case the print statements write unconditionally to the layer
receiving the trace. A conditional trace is possible by adding a level of
software to remove unwanted output. A file of directives, supplied by

DEBUGGING WITH BLIT TERMINAL 1637

the programmer, can be used to control which print statements are
active and which should be ignored. Checking the control file period-
ically to see if it has changed provides asynchronous control of the
trace; the control file can be edited (in a third layer) while the program
is running, to select dynamically which trace output is produced.

So far, there has been no mention of the UNIX system debuggers
adb and sdb. These tools are functionally alike. Both debuggers
examine dump files from aborted processes and interactively control
the execution of processes to be debugged. They differ in the level at
which the subject program is interpreted: adb presents the program
in terms of symbolic assembly language; sdb presents it in terms of
its C source text. The UNIX system supports interactive debuggers as
separate processes, but the subject must be a child process, created by
the debugger.

For adb and sdb, isolation of the subject’s I/O is handled easily.
Both debuggers have a run command to start the execution of the
subject process. The command takes arguments to be passed to the
process, including I/0 redirection. So the standard I/0 devices for the
subject process can be chosen to make it communicate with another
layer. As with the other examples, the UNIX system I/O abstraction
makes the technique possible. The Blit merely places a personal set
of asynchronous devices at the programmer’s disposal.

IV. DEBUGGING BLIT PROGRAMS

C programs down loaded into the Blit must also be debugged. The
Blit environment is quite unlike the UNIX system environment and
affects the way Blit programs are debugged:
¢ Control flow in many Blit programs is driven by asynchronous input

from the mouse, the keyboard, the clock, and a corresponding process
on the host. This introduces some of the problems of debugging real-
time software, particularly the difficulty of recreating conditions
that produce an error. However, one classic bane of real-time pro-
grams is absent—response to interrupts is handled entirely by Blit
system software.

¢ The primitive operations of the layer in which a program runs are
those of bitmap graphics, not those of an ASCII terminal. A print
statement only works if the program incorporates a set of output
routines that interact properly with the graphics.

e The’ Blit has no memory management. Addressing errors may not
be detected before a process has overwritten memory other than its
own. However, one common addressing fault, indirection through
location zero, is trapped by hardware.

e There is no preemptive scheduling. A looping process seizes the

1638 TECHNICAL JOURNAL, OCTOBER 1984

processor; this prevents other processes from running. When this

happens a special key on the keyboard must be used to kill the

looping process.

The jof f debugger is the principal tool for debugging Blit processes.
It is described more fully in Ref. 5, which includes some details of its
implementation. Jof f is quite unlike the UNIX system debuggers in
the way it interacts with the programmer and the subject process. It
is invoked in its own layer before being bound to the subject process
to be examined. In a layer the command joff invokes the UNIX
system process of joff, which immediately down loads the part of
jof £ that runs in the Blit. Once loaded, jo£f £ is in an idle state with
no layer to debug, indicated by the message in the status line at the
top of its layer. The part of the display that has changed is underlined.

no layer

pJ—

The remainder of the jof £ layer scrolls text up the screen and off
the top when it fills. The “: _” in the scrolling region is a prompt for
a keyboard command. In fact, keyboard commands are used very little;
all of the common commands are from the pop-up menu on the right-
hand mouse button. At the outset, the menu is just:

layer
quit

If layer is picked, the cursor changes to a bullseye icon. Moving the
bullseye to a layer and pressing the right-hand button selects the
process running in that layer as the subject of jo f £. Assume the layer
selected is running the Blit text editor, jim. By examining the argu-
ments with which jim was invoked, jof f attempts to determine the
host object file from which the process was down loaded, in order to
find the symbol tables. The name of the object file should be element
0 of a vector of arguments, known by convention as argv, passed to
the function ma in. This is printed in the scrolling area followed by a
prompt, with the cursor switched to an icon calling for a menu
selection:

DEBUGGING WITH BLIT TERMINAL 1639

argv[0] = /usr/blit/mbin/jim.m
symbol tables?

The menu presented is:

argv (0]
none
keyboard

The expected response is argv [0], but the other entries permit the
special cases of proceeding without symbol tables, or entering the
name of another file from the keyboard.

Having successfully bound itself to jim, jof £ displays the state of
its subject in the status line:

running
argv[0] = /user/blit/mbin/jim.m

In this case jim is running, that is, executing normally. If jim were
stopped because of a run-time error or suspended by the down-loader
before starting to execute, it would be selected as the subject in the
same manner. The right button menu is now:

layer
quit
breakpts
globals
halt

Notice that layer is still there; joff can be switched to another
process at any time. Three new entries have appeared:
breakpts—to set and clear breakpoints,
globals—to examine global variables,
halt—to suspend the subject process.

1640 TECHNICAL JOURNAL, OCTOBER 1984

A menu entry appears only when its use is valid. There is no need to
breakpoint or halt jim before using globals to see the values of its
global variables. Picking globals changes the menu on the right
button to:

Drect glb
F_rectf glb
Jdisplay glb

Null glb
P glb
—string glb
boxcurs glb

bullseye glb
butfunc glb
complete glb
current glb
deadmouse glb

This shows only the top 12 items from a sorted list of the 40 global
variables of jim. A scroll bar (not shown) beside the menu scrolls the
12-item window quickly through the full list. Each variable is identified
as global by the g1b tag; showing the class of each variable is needed
to resolve ambiguity in some menus. Picking a variable from this
menu, for example, current, requests that its type and value be
displayed; current is a pointer to the portion of text displayed from
the file currently being edited by jim:

running

argv[0] = /usr/blit/mbin/jim.m
struct Textframe * : current=53180
struct Textframe * : current?

Note that there was no need to refer to the source text of jim to
find this variable. To compose this entire example I used only jof£
to feel aound inside jim until I found interesting objects. Of course
the blind alleys have been removed from the transcript. In general, it
is quite practical to examine the data structures in a working program
without reference to the source text.

The value of current is a pointer to a Textframe' structure at

t To ease reading, license is taken with the length of identifiers. In the symbol tables,
all identifiers are truncated to eight characters.

DEBUGGING WITH BLIT TERMINAL 1641

address 53180. The prompt is an invitation to use a menu to construct

an expression based on current, and examine the data structure.
This menu begins:

~[?]
Textframe{~]}
—->rect
~->scrollre
~=->totalrec
~->str
~=->s1
~—>>52
~=>scrolly
~—>file
~->obscured

Each entry is an expression in which tilde represents the active
expression, current. The rectangle where text is displayed is stored
in the rect field of a Textframe structure, current~->rect,
selected by picking ~->rect:

running

argv[0] = /usr/blit/mbin/jim.m
struct Textframe * : current=53180
struct Rectangle: current->rect?

Now the active expression is a Rectangle structure. No value has
been shown—it is not a scalar or a pointer. There is a new prompt to
extend the expression and the menu is:

Rectangle i~}
~.origin
~.corner

%outline(~)

newframe(~)
rXOR(~)

Rectangle{~}, at the top of the menu, is not a C expression. It is a
request to display each field of the structure and its substructures,

1642 TECHNICAL JOURNAL, OCTOBER 1984

recursively. The standard Blit representation of a rectangle is struct
Rectangle:
typedef struct Point {
short x;
short y;
} Point;
typedef struct Rectangle |
Point origin;
Point corner;
} Rectangle;
Three functions—%outline(), newframe(), rXOR()—also
appear in the menu, for reasons discussed below. Picking Rectan-
glej~} produces:

running

argv [0] = /usr/blit/mbin/jim.m

struct Textframe * : current=53180
current->rect=jorigin={x=27,y=452}, corner
={x=787,y=984}]

struct Rectangle: current—>rect?

This selection has not moved deeper into the data structure and
current->rect reappears as the prompt, with the same menu.
Picking ~.origin gives:

running

argv[0] = /usr/blit/mbin/jim.m

struct Textframe * : current=53180

current ->rect = {origin = {x = 27,y = 452}, corner
= {x=787,y=984}}

struct Point: current->rect.origin?

and the menu for a Point:

Point{~}
~.X
~.y
Y%opoint (~)
pttoframe(~)

DEBUGGING WITH BLIT TERMINAL 1643

In this menu, %point(~), and in the previous menu, %out-
line(~), are examples of functions built into jof £ for graphically
displaying the standard Blit graphics data structures. A point is shown
graphically by a flashing a cross hair at its position on the screen, and
a Rectangle by drawing its outline in exclusive-or mode. Graphic
display of graphics objects is the natural way to debug graphics
programs; many bugs are immediately apparent. For example, it might
be obvious from an image that a rectangle has been rotated and
translated, an observation that might not emerge from the numeric
coordinates.

The Point menu also contains pttoframe (~). This is the func-
tion in j im that maps a screen position to a pointer to the Textframe
covering the position; it determines to which of the jim files the
mouse is pointing:

Textframe *pttoframe(pt)

Point pt;

This function is included by virtue of being applicable, that is, its only
argument matches the type of the active expression. In general, this
brings into the menu many useful functions, such as coordinate
transformers and special display functions. Picking pttoframe(~)
makes

pttoframe(current->rect.origin)
the new active expression and evaluates it:

running

argv[0] = /usr/blit/mbin/jim.m

struct Textframe * : current=53180
current->rect={origin={x=27,y=452}, corner
={x =787 ,y=984}]

struct Textframe * : pttoframe(current->
rect.origin)=53180

struct Textframe * : pttoframe(current->
rect.origin)?

All is well—the pointer returned by pttoframe is the value of
current, 53180.

Throughout this interaction with joff, jim continues to run—
idling, waiting for mouse or keyboard input, its data structures un-
changing. At any time it is possible to switch layers and interact with
jim to manipulate it and see how it behaves. With jim executing
asynchronously, jof £ does not try to present a consistent view of the
internal state of jim; each expression is evaluated separately and
reflects the values of the jim variables at the time of evaluation. To
guarantee a consistent view, jim must be suspended, by using the
halt or breakpts command from the main menu. Picking

1644 TECHNICAL JOURNAL, OCTOBER 1984

breakpts yields a menu containing the one hundred functions in
jim, beginning:

gcalloc()
Rectf ()
Send()
addstring()
adjustnames()
box()
buttonhit()
buttons()
center()
charofpt()
closeall()
closeframe()

Picking one of the functions, say box (), produces a further menu
for setting breakpoints:

call

return

both
>none

The “>" tag on none indicates that no breakpoints have yet been set
on box. Picking call sets a breakpoint on any call to box. Reshaping
the current text frame in jim results in a call to box, to clear a
rectangle and draw a border around it:

box(t)

Textframe *t;
Next, jof f announces the breakpoint in the status line:

call: box(t=53180)

argv[0]= fuser/blit/mbin/jim.m

struct Textframe * : current=53180
current->rect={origin={x=27,y=452}, corner
= {x=787,y=984}}

struct Textframe * : pttoframe(current->
rect.origin)=53180

Correctly, the box argument, t, has the same value as current.
With jim suspended, the jof f menu becomes richer:

DEBUGGING WITH BLIT TERMINAL 1645

layer
quit
breakpts
globals
stmt step
go
traceback
function
box() vars

The new entries are:
stmt step—to execute one source statement from the subject,
go—to restart the subject,
traceback—to list the functions on the callstack,
function—to select the current function from the callstack,
box() vars—to examine local variables in the current function,
box(),
A menu of local variables behaves like the menu of global variables.
The current function can be changed by picking function from the
main menu. This produces a menu of the functions on the callstack:

box()
dodraw()
menugene()
buttonhi()
main()

Picking dodraw(), for example, makes it the current function;
dodraw() vars then appears in the main menu and its local
variables are accessible instead of those of the box.

Though far from exhaustive, this demonstration of joff empha-
sizes the characteristics that make it an effective tool:

1. It is bound dynamically to an arbitrary subject process, in any
state.

2. It executes asynchronously with its subject.

3. A simple, mouse-based user interface supports all the basic
commands and expressions for “pointer chasing.”

4. Graphics data are displayed graphically.

V. DEBUGGING DISTRIBUTED PROGRAMS

Applications for the Blit are usually composed of two communicat-
ing processes, one running on the Blit processor and one running in
the UNIX system. The example above ignored the other process of
jim—managing the files on the host. There is no difficulty when both
processes must be debugged simultaneously. Debugging the UNIX

1646 TECHNICAL JOURNAL, OCTOBER 1984

system process does not interfere with debugging the Blit process.
None of the debugging techniques makes any assumption about what
is happening elsewhere. For example, if the UNIX system process is
executed under sdb, and joff is applied to the Blit process, three
layers are used: one for the application and two for debuggers. Neither
debugger is aware of the other.

VI. CONCLUSION

Using the Blit to debug UNIX programs makes existing debugging
tools and techniques more effective. The Blit’s multiple virtual ter-
minals make it easy to exploit the UNIX system’s inherent character.
Multiple shells help to handle the diversity of tasks involved in
debugging. I/0 on the UNIX system cleanly isolates debugging activity
from the program’s normal communications.

A debugger for C programs on the Blit takes advantage of the Blit’s
hardware/software architecture to provide more function and a better
user interface than the UNIX system debuggers. The Blit debugger is
bound dynamically to a running process and then executes asynchron-
ously beside it. With a menu-based user interface driven by the mouse,
the keyboard is rarely needed, even when using expressions to examine
complex data structures.

VII. ACKNOWLEDGMENTS

I wish to thank Brian Kernighan and Rob Pike for their comments
on drafts of this paper.

REFERENCES

1. M. L. Model, “Monitoring Systems Behavior in a Complex Computational Environ-
ment,” CSL-79-1, Xerox Corp., 1979.

2. B. A. Myers, “Displaying Data Structures for Interactive Debugging,” CSL-80-7,
Xerox Corp., 1980.

3. R. Pike, “The UNIX System: The Blit: A Multiplexed Graphics Terminal,” AT&T
Bell Lab. Tech. J., this issue.

4. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice-Hall, 1978.

5. T. A. Cargisl}i “The Blit Debugger,” J. of Syst. Software, 3, No. 4 (December 1983),
pp. 277-84.

AUTHOR

Thomas A. Cargill, B.S. (Mathematics/Computer Science), 1973, University
of Reading, England; M. Math., 1975, and Ph.D., (Computer Science), 1979,
University of Waterloo, Ontario; AT&T Bell Laboratories, 1982—. Mr. Cargill
was Assistant Professor at the University of Waterloo from 1980 to 1981. At
AT&T Bell Laboratories he is a member of the Computing Science Research
Center. His research interests are in software support for software develop-
ment.

DEBUGGING WITH BLIT TERMINAL 1647

