AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October 1984
Printed in U.S.A.

The UNIX System:

The Evolution of C—Past and Future

By L. ROSLER*
(Manuscript received September 12, 1983)

The C programming language was developed originally to implement
UNIX™ operating systems and their utilities. It has become a mainstay of
systems and application programming at AT&T Bell Laboratories, and is
rapidly growing in commercial importance. It continues to evolve in response
to the needs of new environments, spanning the range from tiny peripheral
controllers to huge electronic switching systems written and maintained by
hundreds of programmers. There are severe reliability and real-time con-
straints throughout this spectrum. This paper reports changes made so far to
meet the needs of these new environments and indicates the directions of
current developments.

I. INTRODUCTION

The C programming language was designed in the early 1970’s by
Dennis M. Ritchie as part of the development of the original UNIX
operating system.! The capabilities of the language for programming
portable operating systems were enhanced rapidly as the first UNIX
. system was ported to other processors.

In 1978 Kernighan and Ritchie published the definitive description
and reference manual® for the C programming language as it existed
then. They were joined by Johnson and Lesk in a descriptive article®

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1685

in this journal that evaluated the language after five years of experi-
ence, and projected future directions for its growth. This paper reports
changes made in the succeeding years and indicates the direction of
current developments.

A major trend in the development of C is toward stricter type
checking, along the lines of languages like Pascal.* However, in ac-
cordance with what has been called the “spirit” of C (meaning a model
of computation that is close to that of the underlying hardware), many
areas of the language specification deliberately remain permissive.
This allows implementors the freedom to achieve maximum efficiency
by using the instructions most appropriate for each machine. (For
example, the sign of the remainder on a division involving negative
integers is explicitly unspecified.)

In keeping with the original sparse design of the language, nothing
has been added that can only be implemented effectively by calling a
run-time function. (This does not prevent an implementor from choos-
ing to implement an operation in the language for which the hardware
support is inadequate by a call to a hidden function. For example, this
may be the most appropriate way to implement floating-point arith-
metic on processors that do not support floating-point operations.)
For this reason, the exponentiation operation is not part of the
language, but must be explicitly invoked by the programmer as a
function in the library.

Many other capabilities (including input/output, storage allocation,
and mathematics) are integral parts of other languages but not of C.
For practical reasons of application portability, the libraries that
provide these capabilities for C are also subject to standardization, so
they now might reasonably be viewed as extensions of the language.
In recent years, major enhancements in functionality and efficiency
were made to these standard support libraries. However, this paper
will focus on the language proper.

Note that the material presented here represents changes to the
AT&T Bell Laboratories definition of the language, not to any imple-
mentation. No existing compiler fully implements the new definition
as yet, which is itself subject to change as a result of standardization
efforts.

The reader is presumed to have some familiarity with C as presented
by Kernighan and Ritchie.? References in parentheses refer to sections
in The C Reference Manual printed as Appendix A of that book.
However, this paper can be understood without having the book at
hand.

1. PORTABILITY AND STANDARDS
To maintain the stability of a mature language while allowing

1686 TECHNICAL JOURNAL, OCTOBER 1984

controlled evolution is both a technical and an administrative chal-
lenge.

Since 1977, the Computer Technologies Area of AT&T Bell Labo-
ratories has sponsored a committee to develop and maintain internal
C standards. This committee monitors and promotes the portability
and evolution of the C language proper, the support libraries without
which useful work in C is impossible, and the many UNIX systems
and other environments in which C is implemented. As a result of
that effort, applications that do not rely heavily on the characteristics
of the supporting hardware or operating system can be moved from
one environment to another without significant reprogramming.

In recognition of the growing commercial importance of C, the
American National Standards Institute (ANSI) chartered a technical
committee (X3J11) to develop a standard for the language, libraries,
and environment. The current schedule calls for a draft to be published
for public comment early in 1985.

lll. MANAGING INCOMPATIBLE CHANGES

Inevitably, some of the changes that were made alter the semantics
of existing valid programs. Those who maintain the various compilers
used internally try to ensure that programmers have adequate warning
that such changes are to take effect, and that the introduction of a
new compiler release does not force all programs to be recompiled
immediately.

For example, in the earliest implementations the ambiguous expres-
sion x = —1 was interpreted to mean “decrement x by 1”. It is now
interpreted to mean “assign the value —1 to x”. This change took place
over the course of three annual major releases. First, the compilers
and the 1int program verifier’ were changed to generate a message
warning about the presence of an “old-fashioned” assignment operator
such as = —. Next, the parsers were changed to the new semantics, and
the compilers warned about an ambiguous assignment operation.
Finally, the warning messages were eliminated.

Support for the use of an “old-fashioned initialization”

intx 1;

(without an equals sign) was dropped by a similar strategy. This helps
the parser produce more intelligent syntax-error diagnostics.

Predictably, some C users ignored the warnings until introduction
of the incompatible compilers forced them to choose between changing
their obsolete source code or assuming maintenance of their own
versions of the compiler. But on the whole the strategy of phased
change was successful.

EVOLUTION OF C 1687

IV. SIGNIFICANT CHANGES

The changes discussed in this section represent significant shifts in
the orientation and capabilities of the language. Unless we explicitly
state it, all the changes described are backward-compatible.

4.1 Float and double

In the arena of the original application of C (the implementation of
UNIX systems), the efficiency of floating-point arithmetic was of little
importance. Support libraries were simpler if only one type of value
was handled. Furthermore, the hardware of the first production im-
plementation favored the use of double precision over single precision.

These considerations manifested themselves as a requirement that
all floating-point arithmetic be done in double precision (Ref. 2, Sect.
6.2). In addition to providing a marginally useful increase in default
accuracy, this choice helped keep the code generators simple.

This requirement now seems inappropriate, in view of the following
changed circumstances:

1. Because of its other desirable attributes, C is being used more
frequently in areas such as scientific calculation, where computation-
ally oriented languages such as Fortran were the traditional choices.
A general-purpose language should support floating-point arithmetic
as efficiently as possible.

2. In fact, most implementations perform double-precision arith-
metic more slowly than single-precision, and access to the operands is
more costly.

3. Many code generators for C are enhanced to share support for
languages (such as Fortran) that require single-precision arithmetic in
a single-precision context.

Therefore, C compilers may now use single-precision operations to
implement floating-point arithmetic that involves single-precision op-
erands. Interfunction linkages (arguments, formal parameters, and
return values) declared to be float are still coerced implicitly to
double. This resembles the widening of char and short arguments
to int, and simplifies the maintenance of libraries and the specifica-
tion of constants as arguments. The called function can declare the
formal parameter as £1loat if desired.

4.2 Type specifiers

4.2.1 Void

Unlike many other languages, C makes no syntactic distinction
between procedures that return a value (functions) and procedures
that have only side effects (subroutines). Both are called functions in
C

Because most useful functions do return values, in particular integer
values in most systems programming environments, the language

1688 TECHNICAL JOURNAL, OCTOBER 1984

permits the declaration for a function returning an integer to be
omitted (Ref. 2, Sect. 13). Furthermore, even if a declaration is given,
for example:

externf();

if no type is specified it is taken to be integer (Ref. 2, Sect. 8.2).

This convenient default leads to various incorrect descriptions re-
garding functions that in fact return no value. For example, how could
one declare a pointer to such a function? As some type must be
specified:

int (*fp)() =f;

2

the declaration is interpreted as a pointer to a function returning an
integer, even though no value is in fact returned.

The new type void has been added to deal with this anomaly. It
can be used only to declare a function that returns no value or as a
cast to state explicitly that the value returned by a function is being
ignored. Obviously, the nonexistent “value” of a function declared as
returning void cannot be used in an expression or cast to any other

type.
4.2.2 Enum

An enumeration data type has been added to C. It is similar in
intent to the enumerated type of Pascal—to restrict the set of values
that can be assigned to specific integer variables. In the following
example

enum fruit {apple, orange, pear} lunch, dinner;

lunch and dinner are integer variables that have assigned to them
only the values apple, orange, or pear. The optional tag fruit may
be used to refer to this enumeration elsewhere.

A significant difference from Pascal is that values may be specified
for any or all of the integer constants that constitute an enumeration:

enum permissions {read=4, write=2, execute=1};
A value may even be duplicated:
enumunities {one=1, uno=1, eins=1, odin=1};

The name of an enumeration constant may not be reused in a different
enumeration, however, even with the same value.

The successor, predecessor, and ordinal functions of Pascal are not
available. Therefore, it is not possible in C to write a simple loop over
the values of an enumeration variable, because they need not form a
linear sequence.

EVOLUTION OF C 1689

Enumeration constants provide a convenient way of moving into
the compiler proper a task that could be handled in the preprocessor
by a list of #def ine names. This helps in symbolic debugging, as the
identifiers themselves appear in the symbol table. It also eliminates
the need to supply sequential values that may in themselves have no
interest.

4.3 Structures and unions
4.3.1 Names of members

In the original specification (Ref. 2, Sect. 8.5), all members of
structures in a single compilation had to have unique names. The only
exception was that the same name could be used in two different
structures if the type and offset were the same in both.

Because of the likelihood of name conflicts in large applications
(where header files might include several hundred structure defini-
tions), these rules were relaxed to allow the same name to be used in
more than one structure or union, even with different types or offsets.
For this to be effective, any reference to a structure or union member
must be fully qualified, and the type of reference must be the same as
the type of structure or union containing the member referred to.

In other words, it is no longer valid to refer to one type of structure
using a pointer declared as pointing to another type of structure, or
using an integer as a pointer. An explicit cast must be used. This
closes a previous loophole (Ref. 2, Sect. 14.1) and is not backward-
compatible. (Type equivalence is name equivalence—structures with
different tags are of different types, even if their members are identi-
cal.)

This major change was introduced in phases, in the same way as
the change from =op to op= described in an earlier section. Compiler
warnings identified incomplete qualifications and type conflicts, but
the programs could still be compiled unambiguously, as the names of
members all had to be unique to begin with.

4.3.2 Assignments, parameters, and function values

As Ref. 2, Sect. 14.1 predicts, the semantics of structures and unions
has been enriched. The value of a structure or union may be assigned
to another one of the same type; a structure or union may be passed
as an argument to a function; and a function may return a structure
or union as its value. For example:

structsa, b, £();
a=b; a=£f(b);

are valid declarations and statements.
Even though similar operations on arrays exist in other languages,

1690 TECHNICAL JOURNAL, OCTOBER 1984

these desirable enhancements could not be retrofitted to arrays in C.
The interpretation of an array name as a pointer expression is em-
bedded too deeply in existing programs (Ref. 2, Sect. 7.1).

V. OTHER CHANGES

These changes are presented here in the order of the relevant
sections in The C Reference Manual. They also are backward-compat-
ible, except as described.

5.1 lLexical conventions

Form feeds and vertical tabs are added to the list of characters (Ref.
2, Sect. 2) that serve as “white space” to separate tokens and “line
breaks” for compiler control lines. No semantics had previously been
ascribed to these characters.

5.2 Key words

As we discussed above, two new key words, void and enum, were
added to represent new types. This change affects only programs that
happened to use those words as identifiers.

The entry key word (Ref. 2, Sect. 2.3) was never implemented and
is no longer reserved.

5.3 Constants

The digits 8 and 9 are no longer accepted in octal-integer constants
(Ref. 2, Sect. 2.4.1). Though not backward-compatible, this change
had little impact, as few programmers used this quirk in writing octal
constants.

Previously, the backslash in an undefined escape sequence in a
character or string constant was explicitly ignored (Ref. 2, Sect. 2.4.3),
so that '\ z', for example, was a strange but acceptable way of writing
'z'. Now, the meaning of an undefined escape sequence is explicitly
undefined, so '\z' has no meaning.

This too is an incompatible change, but is justifiable since it allows
new escape sequences to be defined in the future without affecting
existing valid programs. As an example, the escape sequence \v has
been added to denote a vertical tab. A proposal has been adopted to
use the escape sequence \xddd to describe a hexadecimal constant,
analogous to the existing \ddd notation for an octal constant.

5.4 Initialization

Arbitrary restrictions in any area of a language are undesirable,
since they add to the difficulty of learning and using it.

The restriction against initializing an automatic array or structure
(Ref. 2, Sect. 8.6) was based on practical considerations of compiler

EVOLUTION OF C 1691

complexity, not on theoretical objections. This restriction has been
removed, though no compiler yet implements this capability. The
syntax is identical to that used for initializing an external or static
array or structure.

The restriction against initializing a union was based on the lack of
suitable unambiguous syntax. The ANSI draft standard will propose
that a union be initialized according to the type of the first member
in its declaration, ascribing for the first time significance to the order
of declaration.

With these changes, there will no longer be any object that cannot
be initialized.

5.5 Type specifiers

Every size of integer now has a corresponding unsigned type (Ref.
2, Sect. 8.2).

In anticipation of the extension of C to support more than two sizes
of floating-point numbers (in accordance with a proposed IEEE
standard®), the type 1ong £loat is no longer accepted as a synonym
for double. This change should have minimal impact on existing
programs, as the synonym seems to have been used infrequently, if at
all.

5.6 Defined type
Even though in a construction such as

typedef int KILOMETERS;
" KILOMETERS distance;

the type of distance is int (Ref. 2, Sect. 8.8), the defined type may
not be further modified by 1ong, short, or unsigned. For example,

long KILOMETERS to_the_moon;
is invalid; a new type must be defined:

typedef long int ASTRONOMICAL;
ASTRONOMICAL to_the_moon;

This is a clarification, not a change.

5.7 Switch statement

The restriction that the controlling expression of a switch statement
have type int (Ref. 2, Sect. 9.2) is being removed. Any integral type
will be permitted, and the case-expressions will be coerced to that

type.
5.8 External data definitions

Of all the areas of potential change, this has caused the most

1692 TECHNICAL JOURNAL, OCTOBER 1984

controversy. The manual states (Ref. 2, Sect. 10.2) that the default
storage class for an external data definition is extern. Thus, when
several external data definitions of the form int i appear, the inten-
tion is to define a single variable, i, whether or not the extern key
word is present.

This implies the existence of a mechanism similar to that of Com-
mon in Fortran, which associates multiple definitions of the same
external identifier. Limitations in the support software in several
vendor-supplied operating systems make it difficult or impossible to
implement this design intent. Therefore, a distinction was introduced
(Ref. 2, Sect. 11.2) in the use of the extern key word — its appearance
indicated a declaration for the external variable in question, its absence
indicated a definition. Most important of all, there has to be exactly
one such definition in the set of files constituting a single program.

Thus this restriction is actually a portability constraint imposed by
some environments, not a characteristic of the C language itself. The
capability of many UNIX system implementations to allow more than
one identical external data definition to appear (without the extern
key word) is considered to be an extension to the more restrictive
ANSI draft standard.

5.9 Compiler control lines

The conditional-compilation facility (Ref. 2, Sect. 12.3) has been
enhanced in two ways.

To facilitate selection of one among a set of choices, any number of
control lines of the form

#elif constant-expression

may now appear between a #if line and its closing #endif (or #else
if present).

The new pseudofunction defined (identifier) may be used in the
constant-expression part of a #if or #elif control line, with value 1
if the identifier is currently defined in the preprocessor, and 0 other-
wise. Thus, #ifdef identifier is equivalent to #if def ined (identifier),
and #ifndef identifier is equivalent to #if !def ined (identifier). The
older forms will be retained for backward compatibility, as they are
deeply entrenched in existing code. But, as they are superfluous,
equivalents to #ifdef will not be provided for the new construction
#elif.

VI. INTRACTABLE PROBLEMS
6.1 Preprocessing

One unfortunate effect of preprocessing the text before compilation
is that programmers must know which functions are macroinstruc-

EVOLUTION OF C 1693

tions. They may not be declared; they do not obey the call-by-value
semantics of C functions; and their arguments may be evaluated an
unknown number of times, so side effects are unpredictable. A general
trend for the future will be to rely less on the preprocessor and more
on the compiler.

6.2 Integer sizes

Although the portability of C has been amply demonstrated over
the past decade,®” persistent problems arise where the size of a 1ong
int differs from that of an ordinary int.

For example, the difference of two pointers has been described as
an ordinary int (Ref. 2, Sect. 7.4). But in a large-address environment
where a pointer has the same size as a 1ong int (Ref. 2, Sect. 14.4),
an ordinary int may not be large enough to store the difference. This
would impose an arbitrary limit on the size of an array. It is now
agreed that the difference should have the same size as the pointers
being subtracted.

This solves the problem only in part. Consider the common situation
where the difference is used, for example, as an argument to an input/
output function. Such an argument cannot be declared portably, but
a suitable type definition could be provided as part of a standard
header file.

VIl. FUTURE DIRECTIONS

All the enhancements and changes to the language defined by
Kernighan and Ritchie® discussed in the preceding sections exist in
many widely used compilers and have been presented to the ANSI
X3J11 committee for standardization. The section that follows deals
with later proposals that are still being evaluated.

One major proposed enhancement, the introduction of classes (ab-
stract data types) similar to those of Simula, is presented in a com-
panion article.® Other enhancements, presented in this section, are in
use internally, but have not yet been exposed to large numbers of
programmers. They are reported here to indicate some of the antici-
pated directions of language evolution.

7.1 Argument typing

At present, most C compilers make no checks on the number and
type consistency of function invocations, even within a single compi-
lation. In UNIX systems, this responsibility is delegated to the 1int
program verifier, which checks, among many other things, the con-
sistency of function interfaces over an entire program set and associ-
ated libraries.

Because of the computer resources required to do the extra parsing

1694 TECHNICAL JOURNAL, OCTOBER 1984

involved, the cost of using 1int in the development of very large
programs may be prohibitive. User-generated 1int libraries that de-
clare function arguments and return values but omit function bodies
relieve this cost somewhat, but must be kept in phase with the real
source. It would be better to provide a way, as part of a function
declaration, for the compiler itself to be informed of not only the type
returned by the function (as at present), but also of the types of the
function arguments.

A method has been developed to do this in a backward-compatible
way.? In a function declaration, arguments may be declared sequen-
tially by type, thus:*

char *fgets(char *, int, FILE *);

When no further information about the arguments is provided, a
trailing comma is added:

int fscanf (FILE *, char *,);

When no information at all about the arguments is provided, nothing
is between the parentheses, which is compatible with existing pro-
grams. The special case of declaring a function with no arguments is
handled via the void key word:

int rand(void);

Perhaps the most important payoff of argument typing is that, if
possible, an argument is coerced to the type of its corresponding
formal parameter, as if by assignment. This will eliminate a major
source of interface errors in large programs. Incompatibilities (such as
an integer argument and a pointer formal parameter) will cause fatal
compilation errors.

7.2 The “const” type specifier

A new type specifier, const, has been added® to meet a need that
has long been recognized—declaring that the value with which a
particular variable is initialized may not be changed during execution
of the program.

In some environments, this may simply tell the compiler not to
allow the variable to appear on the left-hand side of an assignment
and not to allow its address to be assigned to a pointer through which
it may be modified. (Such an implementation could not protect against
an inadvertent modification caused by a wild pointer.) This is the
most protection that can be provided if the const variable has auto

* The examples are functions in the Standard Library, partly described in Chapter 7
of Kernighan and Ritchie.?

EVOLUTION OF C 1695

or register storage class, so that it is initialized dynamically on each
entry to the block in which it is defined, and the value with which it
is initialized is itself variable.

If the storage class of the variable is extern or static, or if the
initializer is constant, the compiler may be able to place the data in
an area of memory protected by hardware against modification. This
also allows space to be saved by sharing the data among several
simultaneous executions of the program, just as the program text may
be shared in some implementations. The data may even be placed into
read-only memory if desired.

This mechanism is particularly appropriate for large arrays of
permanent data, such as parse tables or constant character strings.
To achieve the desired end, some programmers have resorted to editing
the assembly language produced by current compilers. At the cost of
reserving yet another key word (possibly used as an identifier in
existing programs), this new facility legitimizes the needed capability
in the language proper.

An interesting distinction can be made between pointers that them-
selves are constant:

char * const constant-pointer
and pointers to constant data:
const char * pointer-to-constant

The latter can be used to declare that even though an argument is a
pointer the function does not change the data pointed to.

char *strcpy(char *, const char *);

declares that strcpy gets two arguments that are character pointers,
but does not change the array pointed to by the second argument.

7.3 Assembler windows

Access to the hardware of the operating environment is often
requested. Code for implementing operating systems or device drivers
may need to manipulate particular registers or to execute instructions
that are inaccessible from C but accessible through the assembly
language of the machine.

Assembly language may also be needed for efficiency. For example,
C does not support the assignment of one array or string to another,
and the programmer must write a loop to do this operation one element
at a time. Yet many machines have extremely efficient implementa-
tions for block moves.

The need for access to special hardware is recognized by providing
standardized library functions, which may be implemented either in

1696 TECHNICAL JOURNAL, OCTOBER 1984

C or in assembly language as appropriate to a particular environment.
But, in time-critical applications, even the overhead of function link-
age may be too high.

Therefore, the need has long been felt for the ability to interject
instructions in assembly language directly in the midst of C code. The
use of such a mechanism destroys portability, and may interfere with
analysis or optimization of the function containing the alien state-
ments.

Many existing C compilers use the key word asm for this purpose.
A statement of the form

asm (string);

causes the specified string to be injected directly into the assembly-
language output of the compiler.

This capability is still not powerful enough for many applications.
No access is provided to identifiers in the C program, so the program-
mer may have to make assumptions about which registers should be
addressed by the assembly-language statements.

An experimental implementation now being evaluated uses the key
word asm in a different context.!® A declaration of the form

asmf (argl,arg2, ---) {...}

defines a function f to be compiled in line (without function linkages).
The programmer can specify alternate assembly-language expansions
in the function prototype, depending on the storage classes of the
actual parameters.

VIIl. EVOLUTIONARY STUBS

By no means have all the experimental enhancements made to C
been accepted as part of the official language. Many developers have
tried to enrich the syntax of the language to individual tastes, but
these efforts did not win wide support. This section describes one
evolutionary stub of more substantial significance, which though it
did not lead to changes in C did provide valuable insight into an
important problem in the development of large programs by many
programmers,

In a very large multifile C program, it is difficult to control the
scopes of external definitions except by carefully structuring a multi-
plicity of header files and including them selectively in the various
compilation units. One project tried a different solution to this prob-
lem: introducing new preprocessor directives to export explicitly the
definitions of specific variables to other files and to import the decla-
rations from other files. To eliminate unnecessary compilation, a

EVOLUTION OF C 1697

program automatically generated files describing the dependencies for
use by the make utility,!! or its enhancement, the build utility.'?

This attempt foundered because of the need to create and maintain
hidden interface files separate from the source files. This arose because
of the possibility of circular dependencies between the variables in
several files. The solution to this problem—explicitly separating the
external interfaces from the program text and managing the depend-
encies using a database manager—is now part of the Ada' language
and programming support environment,

The valuable idea of generating “makefiles” automatically by ana-
lyzing the inclusions of header files is being incorporated in other
tools, however.

IX. SUMMARY

In its decade of existence, C grew beyond its original conception as
a language for implementing operation systems into a full general-
purpose language. This was accomplished by small changes, mostly
backward-compatible, that have not fundamentally altered the original
sparse design.

A major trend in the development of the language is toward stricter
type checking, particularly in the use of pointers and in function
argument type checking. On the other hand, the model of computation
remains close to that of the underlying hardware.

Though mature, the C language continues to evolve in a controlled
way. Internal and external standardization activities will continue to
impose requirements for backward compatibility in the future.

X. ACKNOWLEDGMENTS

Dennis M. Ritchie, the author of C, continues to be closely associ-
ated with its evolution and standardization. His perceptive observa-
tions and insights over the years are greatly appreciated.

Many colleagues provided useful comments on drafts of this paper.
I particularly thank Bjarne Stroustrup, whose ideas are strongly
influencing the future evolution of the language. Lively discussions
among the members of the X3J11 committee have helped clarify many
potential misinterpretations of the language specification.

Because of their potential value, the proposals described in Sections
7.1 (argument typing) and 7.2 (const) have been accepted by the
X3J11 committee.

t Trademark of the U.S. Department of Defense, Ada Joint Program Office.

1698 TECHNICAL JOURNAL, OCTOBER 1984

REFERENCES

1. D. M. Ritchie and K. L. Thompson, The UNIX Time-sharing System, Commun.
ACM, 17, No. 7 (July 1974), pp. 365-75.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

. D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, “The C Program-
ming Language,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 1991-2020.

. IEEE Standard Pascal Computer Programming Language, New York: The Institute
of Electrical and Electronics Engineers, Inc., 1983.

. S. C. Johnson and D. M. Ritchie, “Portability of C Programs and the UNIX
System,” B.S.T.J., 57, No. 6, Part 2 (July-August 1978), pp. 2021-48.

. Draft 10.0 of IEEE Task P754, A Proposed Standard for Binary Floating-Point
Arithmetic, December 2, 1982,

. L. Rosler, “The Best of UNIX on GCOS,” Honeywell Large Systems Users’
Association, October 1978.

. B. Stroustrup, “The UNIX System: Data Abstraction in C,” AT&T Bell Lab. Tech.
dJ., this issue.

9. B. Stroustrup, private communication.
10. R. J. Mascitti, private communication.
11. S. 1. Feldman, “Make—A Program for Maintaining Computer Programs,” Software
Practice and Experience, 9, No. 4 (April 1979), pp. 255-65.
12. V. B. Erickson and J. F. Pellegrin, “Build—A Software Construction Tool,” AT&T
Bell Lab. Tech. J., 63, No. 6, Part 2 (July—August 1984), pp. 1049-59.

w

o o ot

AUTHOR

Lawrence Rosler, A.B. (Physics), 1953, Cornell University; M.S., Ph.D.
(Physics), Yale University, in 1954 and 1958, respectively; AT&T Bell Labo-
ratories, 1957—. Mr. Rosler is Supervisor of the Language Systems Engineer-
ing group in the UNIX Languages and Programming Environment Develop-
ment department. His early work involved the development of solid-state
electronic devices. His more recent work includes the design of languages for
interactive graphics terminals, the implementation of the C language and
libraries on various systems, and the management of C language development
for UNIX systems. Chairman, Language Subcommittee, American National
Standards Institute Technical Committee X3J11 for the Programming Lan-
guage C; member, ACM, APS, Sigma Xi, AAAS.

EVOLUTION OF C 1699

