
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

A UNIX System Implementation for System/370

By W. A. FELTON,* G. L. MILLER,* and J. M. MILNER*

(Manuscript received January 9, 1984)

This paper describes an implementation of the UNIX™ operating system
for IBM Systemj370 computers. In this implementation an underlying Resi
dent Supervisor, adapted from an existing IBM control program, provides
machine control and multiprogramming; while a UNIX System Supervisor,
adapted from the standard UNIX system kernel, provides the UNIX system
environment. This implementation supports multiprocessing, paging, and
large-process, virtual address spaces. Terminal handling is done through an
outboard terminal processor. This paper describes the software structure, with
emphasis on unique aspects of this implementation: multiprocessing and
process synchronization, process creation, and outboard terminal handling.
Capacity and performance of the UNIX system on large mainframes is also
discussed. The first and principle user of the UNIX system for Systemj370 is
the development project for the 5ESS™ switching system. This paper also
discusses the use of a large mainframe UNIX system for this development.
Included in this discussion are the reasons for selecting this system for
development, applications software porting, and general experience with main
frame UNIX systems.

I. INTRODUCTION

One of the great strengths of the UNIX operating system is its
portability. UNIX system implementations have been done for a
variety of computers with greatly varying architectures.1 Perhaps

* AT&T Bell Laboratories.
Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1751



nowhere is this portability better illustrated than in its implementation
for System/370 machines.

Since its introduction by IBM in 1970, System/3702 has become the
dominant architecture for large computer systems; currently about
70 percent of the large mainframes in the United States follow
System/370 architecture. IBM builds a variety of System/370 ma
chines, from relatively small "superminis" to their largest processors.
In addition, other manufacturers, such as Amdahl Corporation, build
machines that conform to System/370 specifications and can thus run
System/370 operating systems and applications. The principal oper
ating system currently used on these machines is IBM's MVS (Mul
tiple Virtual System), although other operating systems-IBM's
VM/370 and TSS/370, and the University of Michigan's MTS-are
also available.

The idea of a UNIX system implementation on System/370 ma
chines, which would bring the power of these large processors to the
UNIX system user, has been discussed for some time. In 1978 we
began to seriously study the possibility of such an implementation.
Our primary objective was to develop a true version of the UNIX
operating system that would be suitable for use in a production
environment on System/370 machines, making full use of the fea
tures and power of these large machines. We wanted to make the
System/370 environment appear to the user and applications program
mer as similar as possible to the standard UNIX system environment;
in the words of one developer, it should "look, feel, and smell like the
UNIX system people are familiar with". At the same time, we wanted
a system that would provide reliable, cost-effective production service,
as, for example, in a computation center environment.

Most of the design for implementing the UNIX system for
System/370 was done in 1979, and coding was completed in 1980. The
first production system, an IBM 3033AP, was installed at the Bell
Laboratories facility at Indian Hill in early 1981. Since then several
large IBM System/370 mainframes have been made to run the UNIX
system at Indian Hill. In addition, there are installations at Holmdel
and Denver.

The first user of the UNIX system for System/370, and currently
the largest user, is the development project for the 5ESS switch," Even
as the system was being developed, the needs of the project were
quickly reaching beyond the use of minicomputers. The UNIX oper
ating system was selected as the development system to be used by
the programmers developing the switching system software. The
UNIX system was selected because of the facilities of the Program
mer's Workbench" software, which provide the developers with editors,
source code control, and software generation systems. Initially, devel-

1752 TECHNICAL JOURNAL, OCTOBER 1984



opment was done on several PDP-1I/70* systems. By late 1980 the
project was using nine PDP-1I/70 systems to provide the programmer
development support environment. These computers were linked to
gether using a commercially available high-speed network with drivers
written for the UNIX operating system. The fragmentation of the
project over nine computers caused significant additional work. The
low-level compiled objects that were compiled on the nine computers
had to be networked onto one computer for the final linking before
generating the final switching program output. The final products had
to be distributed back to the other eight computers so that private
changes could be linked into the full system for private testing. Also,
periodic auditing had to be done to ensure that all computers had the
same common data and that the compilers and other tools remained
the same on each system. The project was continuing to grow, and
adding more minicomputers was not the best solution, because the
auditing and networking overhead would increase on all the minicom
puter systems.

Several solutions were considered to the problem of the growing
number of minicomputers required for the project. The UNIX oper
ating system with the Programmer's Workbench software provided a
better development environment than any other operating system
available. In addition, the developers were all trained in using this
system and all the software tools had been developed. This led to a
requirement that the computer systems selected to solve the problem
support the UNIX operating system, as well as provide an order of
magnitude more computing power in one system than the PDP-1I/70
systems that were being used. This requirement ruled out larger
minicomputers such as the VAX-11/780* systems, which offers ap
proximately twice the computing power of the PDP-1I/70 system.
The IBM 3033AP processor met the requirement with approximately
15 times the computing power of a single PDP-1I/70 processor. After
studying the problem, the project decided to use the UNIX system for
System/370, and requested that the porting be completed and a
production grade system be made available in mid-1981.

II. SOFTWARE ENVIRONMENT

We initially thought about porting the UNIX operating system
directly to System/370 with minimal changes. Unfortunately, there
are a number of System/370 characteristics that, in the light of our
objectives and resources, made such a direct port unattractive. The
Input/Output (I/O) architecture of System/370 is rather complex; in

• Trademark of Digital Equipment Corporation.

IMPLEMENTATION 1753



a large configuration, the operating system must deal with a bewilder
ing number of channels, controllers, and devices, many of which may
be interconnected through multiple paths. Recovery from hardware
errors is both complex and model-dependent. For hardware diagnosis
and tracking, customer engineers expect the operating system to
provide error logs in a specific format; software to support this logging
and reporting would have to be written. The System/370 architecture
lends itself to the use of paging for memory management; the UNIX
system used swapping. Finally, several models of System/370 machines
provide multiprocessing, with two (or more) processors operating with
shared memory; the UNIX system did not support multiprocessing.

Since code to support System/370 I/O, paging, error recording and
recovery, and multiprocessing already existed in several available
operating systems, we investigated the possibility of using an existing
operating system, or at least the machine-interface parts of one, as a
base to provide these functions for the System/370 implementation.
We needed a well-structured system that could provide a clean inter
face for UNIX system processes. The system would have to provide
all the functions needed by UNIX system processes, or at least be
extendible to provide these functions with reasonable effort.

Of the available systems, TSS/370 came the closest to meeting our
needs and was thus chosen as the base for our UNIX system imple
mentation.' The choice of TSS/370 was a controversial one; it is a
little known and inadequately documented system. Still, it came the
closest to providing the structure and function needed to support
UNIX system processes, and it appeared that it could be enhanced to
provide any missing functions with reasonable effort. In 1979 we
proposed to IBM that they make the necessary modifications to the
TSS supervisor to support UNIX system processes, according to our
design. IBM agreed to do so under a program license agreement, and
the first version of the enhanced TSS was delivered in 1980.

2.1 Software structure

The UNIX system for System/370 comprises three classes of pro
grams, running in different software levels. From highest to lowest,
these are:

1.User-level programs, including user-written programs andsystem
provided programs, such as the shell;

2. The UNIX System Supervisor, which incorporates much of the
function and C-Ianguage code of the standard UNIX system kernel;
and

3. The Resident Supervisor, which supports the multiprogramming
of UNIX system processes, provides low-level system calls, and man
ages the physical system configuration.

1754 TECHNICAL JOURNAL, OCTOBER 1984



Each UNIX system process, comprising a user-level program and
the UNIX System Supervisor, executes within its own 16-megabyte
virtual memory, in the context of its own virtual machine. The
Resident Supervisor controls the resources allocated to these virtual
machines, including process scheduling, dispatching, and real storage
management.

User programs and the UNIX System Supervisor share the same
16-megabyte process space. The UNIX System Supervisor is located
in the upper 8 megabytes of this space; user programs are located in
the lower 8 megabytes. "Page 0", the lowest 4096 bytes of the process
space, is reserved for Program Status Words (interrupt vectors) and
other information associated with the process virtual machine. The
System/370 protection mechanism is used to prevent user-level pro
gram access to the UNIX System Supervisor. The System/370 archi
tecture allows sharing segments among several virtual memories; as
in the standard UNIX system, this facility is used to permit sharing
both read-only user text and UNIX System Supervisor itself among
UNIX system processes.

A program in one level communicates with the next lower level
through system calls. There are two types of system calls: UNIX
system calls, as defined by the UNIX System User Reference Manual,
used by user-level programs to invoke the UNIX System Supervisor;
and Resident Supervisor system calls, used by the UNIX System
Supervisor to request certain lower-level functions of the Resident
Supervisor. User-level programs never communicate directly with the
Resident Supervisor. Information may be passed from a lower level to
the next higher level either synchronously as return data from a system
call, or asynchronously as a virtual machine interrupt (Resident Su
pervisor to UNIX System Supervisor) or a signal (UNIX System
Supervisor to user-level program). Where available, the system takes
advantage of the System/370 Virtual Machine Assist feature, which
allows a user-level system call to be passed directly to the virtual
machine.

2.2 Paging

As with most System/370 operating systems, the UNIX system for
System/370 uses paging to manage main storage. A 16-megabyte
process consists of up to 4096 pages, each of 4096 bytes; only those
pages that have been allocated and referenced by the process physically
exist. At any given time, these pages may be scattered through main
storage and secondary (drum or disk) storage. For each process, the
Resident Supervisor maintains segment and page tables, giving the
main and secondary storage locations of its pages; these tables are
used by the hardware when translating a virtual address to a physical

IMPLEMENTATION 1755



main storage address. Pages are brought into main storage on demand;
when an executing process attempts to reference a page not in main
storage, a page fault occurs. The Resident Supervisor initiates an input
operation to bring the missing page from secondary storage to main
storage. The process is blocked while the page is read, and another
process may be given the processor. The fact that a process may be
arbitrarily blocked by a page fault while executing in the UNIX System
Supervisor has ramifications to process synchronization; this is dis
cussed in Section 2.5.

Process pages are moved out of main storage to secondary storage
as necessary, on a roughly least recently referenced. The Resident
Supervisor attempts to keep the "working set" of active processes
those pages recently referenced-in main storage. All of a process'
pages, including those containing the UNIX System Supervisor, are
paged; a process that has been inactive for some time has no pages
left in main storage. In addition, the process segment and page tables
themselves can be paged and will also eventually be moved to second
ary storage if the process is long inactive. The amount of permanently
resident information required to represent a process is quite small, a
few hundred bytes. The system also has a page migration mechanism,
whereby pages of long-inactive processes may be moved from fast
secondary storage (drum, fixed-head disk, or solid-state memory) to
slower storage (moving-head disk).

2.3 I/O system
UNIX file systems on System/370 are in format identical to stand

ard UNIX file systems, except that the block size has been enlarged
to 4096 bytes. This block size is more appropriate to a larger system
and allows us to use the paging interface described in this section. As
in the standard UNIX system, I/O is blocked through a large number
of block buffers, which effectively form a cache memory for recently
referenced blocks. These buffers exist in shared virtual memory within
the UNIX System Supervisor area. On a 16-megabyte system, we
typically allocate 4 megabytes to block buffers. When a block I/O
request is made to the UNIX System Supervisor, it first searches this
cache for the desired block. If the block is not found, it allocates a
buffer for the block and asks the Resident Supervisor to read it in.

The Resident Supervisor provides simple read block and wr i te
block primitives, which essentially provide a UNIX System Super
visor interface to the Resident Supervisor's paging mechanism. Re
quests for file system I/O from the UNIX System Supervisor are
handled in essentially the same way as paging requests initiated by
the Resident Supervisor. For example, a read block request simply
updates the process page table. The block may not actually be read

1756 TECHNICAL JOURNAL, OCTOBER 1984



until the UNIX System Supervisor attempts to reference it, at which
point a page fault occurs and the input operation is processed like a
normal page-in operation. The UNIX System Supervisor may also
request that I/O be initiated at the time a read block is executed;
this is usually done to provide I/O and process execution overlap. All
disks and drums in the System/370 configuration are formatted into
4096-byte records. All I/O to these devices is done through highly
optimized "drivers" in the Resident Supervisor. Storage on these
devices may be allocated either to the Resident Supervisor for process
paging, or the the UNIX System Supervisor for file system storage.

The Resident Supervisor's read block primitive is used by the
UNIX System Supervisor in a special way when processing an exec
system call. Rather than reading the executable file into main storage
through the buffer cache, the Resident Supervisor effectively maps
the executable file into the lower part of the UNIX system process
virtual address space by putting pointers to the file's disk blocks in
the process page tables. As this program executes, the usual page-fault
mechanism is used to read missing blocks of the executable file into
main storage. The advantage of this mechanism is that only those
blocks of an executable file that are actually required during execution
are read into main storage.

The function and form of the character I/O system is conventional.
Most drivers for character-oriented devices construct channel pro
grams styled after System/370, and issue the Resident Supervisor
iocall system call to execute them. All devices are known symboli
cally to the UNIX System Supervisor; the Resident Supervisor does
the messy work of translating the symbolic address into a physical
address, finding a nonbusy path to the device (including a different
processor in some configurations), and initiating physical I/O. Ter
minal device drivers work through a special terminal interface to a
front-end processor; this is discussed in Section 2.6.

2.4 Process creation

As in the standard UNIX system, processes are created by the fork
system call; the new (child) process is created by effectively copying
the calling (parent) process. In the System/370 implementation, a
conventional fork would be complicated by the fact that parts of the
parent process may be scattered through main and secondary storage.
Since the user process may be very large (nearly 8 megabytes), a full
copy could also be very slow.

Fortunately, we can again take advantage of the page-fault mecha
nism to avoid explicitly copying except when necessary, and to delay
most of this copying so as to minimize the data actually copied at the
time a fork is executed. When a child is created, both the child and

IMPLEMENTATION 1757



parent's page tables are set to point to the same copy of a page-be it
in main or secondary storage-with the "page fault" bit set. A private
page that is "temporarily" assigned to both a parent and a child is
called a multiplexed page, and a multiplexed page count, the count of
processes that own this page, is kept. Subsequently, if either the parent
or the child references this page, a page fault occurs; at this time the
page is actually copied, and the multiplexed page count is decremented.
Whenever the multiplexed count is reduced to one-either due to
copying, or because the parent or child releases the page due to process
death or an exec-the page is no longer considered to be multiplexed
and may be given directly to the remaining process.

In practice, this multiplexed page mechanism is quite efficient,
because it implicitly takes advantage of a common UNIX system
characteristic. In most cases, following a fork system call, the child
process almost immediately performs exec on another program, thus
discarding the data just copied by fork. By not copying most process
data until those data are actually referenced-which, in the usual case,
never happens-the System/370 fork executes rapidly, regardless of
process size.

2.5 Process synchronization
In the standard UNIX system, process synchronization is achieved

through events with associated sleep and wake-up operations. This
mechanism is adequate for the usual UNIX system environment, in
which processes cooperatively share a single processor. This mecha
nism is not sufficient for the System/370 implementation, for two
reasons. First, a process on the System/370 may be arbitrarily blocked
by the Resident Supervisor at any time (for example, because of a
page fault), and another process be given the processor. Second, several
models of System/370 are multiprocessors, with two or more identical
processors sharing a common main storage and, in some cases, a
common I/O configuration. In such a system, we may have two or
more processes executing at the same time, possibly executing the
same UNIX System Supervisor instructions. We thus need a synchro
nization mechanism that is indivisible on a single processor and that
guarantees synchronization when simultaneously executed on a mul
tiprocessor.

Perhaps the best known process synchronization mechanism is the
Dijkstra semaphore, with associated P and V operations. A semaphore
is simply a counter. When positive, it represents the number of
resources available (typically, one when used for mutual exclusion);
when negative, its absolute value is the number of processes waiting
for the resource. The P operation is used to obtain the resource; it
decrements the counter and waits if necessary. The V operation is

1758 TECHNICAL JOURNAL, OCTOBER 1984



used to release the resource; it increments the counter and awakens
the (next) waiting process, if any. Semaphores have the desired indi
visibility and multiprocessor-synchronizing properties, and in most
cases replacing sleep and wake ups with P and V, respectively, was
straightforward.

However, simply replacing existing events with semaphores is not
sufficient. In the standard UNIX system, the kernel uses synchroni
zation only where there is some possibility that it may have to give up
the processor-typically to wait for an I/O operation to complete. In
the System/370 implementation we must guarantee exclusive access
to virtually all updates of shared system data by the UNIX System
Supervisor. We thus had to identify all instances of such updates in
the UNIX System Supervisor and surround them with P and V
operations.

Extending process synchronization to all shared data objects in the
UNIX System Supervisor was one of the more difficult parts of this
implementation. This had to be done so as to guarantee the validity
of the data, while avoiding the possibility of race conditions and lock
outs. To minimize process blockage, we wanted this synchronization
to be fine-grained-for example, to protect individual elements in an
array or table, rather than simply the whole table. This led to a large
number of semaphores, with rules concerning how and in what order
P and V operations should be executed. Happily, the basic structure
of the UNIX system kernel lent itself to this effort; very few changes
in structure or program flow were made.

The System/370 instruction set does not contain P and V instruc
tions. However, it does include a synchronizing instruction, Compare
and Swap (CS), that was used in implementing P and V. The efficiency
of P and V is critical; most file-system system calls execute a dozen or
more of these operations. We were able to implement these operations
in such a way that the Resident Supervisor is called for a P operation
only if the process must wait, and for a V operation only if another
process is waiting. Initially, P and V were implemented as assembler
language subroutines; subsequently they were reimplemented as in
line macros. A side benefit of semaphores, especially significant on
larger processors with many processes, is that only one process-the
next in line-is awakened by the V operation; in essence the process
executing the V passes control of the resource to the next waiting
process. This differs from event synchronization, in which all processes
waiting for the event are awakened by wake-up, and must again
compete for the resource.

2.6 Terminals

One of the more difficult problems III making the System/370

IMPLEMENTATION 1759



environment look like the standard UNIX system environment oc
curred in terminal handling. The standard UNIX system uses a full
duplex protocol: characters typed by a user at the terminal are not
displayed immediately but are sent to the processor; they are (usually)
reflected back and printed or displayed. A user program may choose
to process each character as it comes in ("raw mode"). Large IBM
systems conventionally use a half-duplex protocol: characters are
printed or displayed by the terminal as they are typed and sent to a
communications controller. The characters are usually buffered here
and not sent to the main processor until a special signal or character
(e.g., carriage return) is typed. The UNIX system is considerably more
flexible, in that special characters and associated functions can easily
be defined by system or user software. However, it does imply the
overhead of an I/O interrupt with each character. Some systems, such
as the AT&T 3B20S computer, avoid this overhead in normal opera
tion with a special I/O or front-end processor.

In the System/370 implementation, we wanted to provide full
duplex terminal protocol with standard UNIX system features but
without character-at-a-time interrupts in the usual case. This implied
the use of a front-end processor tailored to the UNIX system environ
ment. The standard IBM System/370 communications controllers
proved unsuitable for this application. However, IBM makes a mini
computer, the Series/1, with both good terminal communications
facilities and a System/370 channel interface. Further, there were
existing Series/1 control programs that could be used as a base for a
UNIX system terminal handler. Consequently, we contracted with
IBM's General Systems Division to provide a UNIX system terminal
handler to our specifications. This code was delivered in late 1980,
and the Series/1 is currently used for terminal handling on the
System/370.

We have recently implemented a prototype front-end processor for
the UNIX system for System/370 using a 3B20S system running
standard UNIX System V. This implementation has a number of
advantages; for example, it allows us to provide all the terminal
features offered on the 3B20S computer in System V and subsequent
releases. Also, it may eventually allow us to down load some frequently
used character-oriented, raw-mode programs, such as screen editors,
from the System/370 host. Although initially implemented on a 3B20S
computer, other models in the 3B family of computers may be used. A
number of such processors linked together with a System/370 main
frame could form a network of individual and group work stations,
providing access to the powerful central machine as needed.

1760 TECHNICAL JOURNAL, OCTOBER 1984



III. PERFORMANCE

One of the most interesting questions about the UNIX system on
System/370 is its performance. A number of factors made the perform
ance of the System/370 implementation unique. These factors have a
considerable impact on the performance trade-offs made in the typical
minicomputer implementations of the UNIX system. Coupled with
the computing requirements of the large system-development task for
which it was first used, the 5ESS local digital switch, these factors
determined the capacity of the System/370 implementation. The scale
of the system also demands longer-range capacity forecasting than
typically applied in minicomputers. The following sections discuss
these points in more detail.

3.1 Unique factors

The UNIX system on the larger models of System/370 line, such as
the IBM 3081K, increases by over an order of magnitude the scale and
scope that the operating system must manage. Numbers of processes,
I/O buffers, file descriptors, i-nodes, and other system resources are
measured in hundreds or thousands rather than tens or hundreds as
on minicomputers.

One of the earliest concerns about a UNIX system implementation
for large processors was its ability to "scale"; that is, were there
inherent characteristics of the UNIX system and its algorithms that
limited its implementation on large machines? Happily, we found that
in most cases the straightforward algorithms that implement the
resource policies of the UNIX system perform quite well on this scale,
leading one to question the complex algorithms more typically em
ployed in large operating systems. In a few cases the standard algo
rithm was replaced for efficiency; for example, the standard UNIX
system linear search of the block buffers was replaced by a faster
search based on hashing. The major area where scale appears to have
altered the character of the UNIX system is that of resource limita
tions on individual users or processes. The impact of looping processes
and file space consumers is more widespread, and the cause is more
elusive than in smaller systems. Efforts to detect and correct these
types of problems have substantial benefits in the System/370 envi
ronment.

Additional resources available on a mainframe, such as multiple
central processors, powerful autonomous I/O channels, fast peripher
als such as drums and solid-state mass stores, large amounts of main
storage, and communications front-end processors greatly enhance the
throughput of the UNIX system. In particular, the dramatic increase
in I/O bandwidth coupled with the use of ample main storage for the
disk block cache avoids the I/O-bound behavior typical of smaller

IMPLEMENTATION 1761



UNIX systems. The increased main storage and efficient paging
capability increase the number of dispatchable processes and reduce
idle time. The front-end communication processors buffer the central
processor(s) from character at a time I/O unless required by the
application (the so-called raw mode).

A number of adaptations of the UNIX system that take advantage
of the characteristics of the mainframe also enhance performance.
The larger block size used (4096 bytes versus 512 or 1024 bytes in
smaller machines) reduces the overhead in I/O activities. To avoid the
dramatic loss of usable space that small files and directories would
cause with 4096-byte blocks, the concept of large-block/small-block
files was introduced. Files of less than 493 bytes are stored directly in
the corresponding i-node. As a side effect, once the i-node for a small
block file is read, no further disk access is required to retrieve the file
contents. This proves to be particularly beneficial for shell scripts,
which are commonly used and often quite small, as well as for small
directories. In keeping with the scale of the mainframe and the
development being done on them, the file size limit on System/370 is
currently 16 megabytes. This reduces the need to create and process
multiple files in applications such as databases, which require very
large files.

3.2 Performance trade-offs

As a result of the factors cited above, the typical performance trade
offs on a System/370 machine are different from those for the mini
computer UNIX systems on which most of the current UNIX system
programs were developed. Many UNIX system programs make exten
sive use of temporary files for even modest amounts of data. Some
tools, such as the C compiler, were divided into multiple processes
interconnected by temporary files to work around memory limitations
imposed by early UNIX system hosts such as the PDP-ll computer.
The increased I/O bandwidth and the fact that many small temporary
files remain fully in the disk block cache reduces the impact of the
widespread use of temporary files, but in areas where such files have
been eliminated, the performance gains have been impressive. In
general, a shift in emphasis from temporary files toward greater use
of main memory takes advantage of the additional spectrum available
and allows the efficient paging mechanism to dynamically manage
data that the programmer had previously explicitly and statically
managed. Despite the trend toward increased use of memory, the
average process still requires less than 200 kilobytes of the 8-megabyte
user space.

3.3 System capacity

To determine system capacity of the UNIX system on System/370

1762 TECHNICAL JOURNAL, OCTOBER 1984



machines relative to minicomputers such as the PDP-ll/70,
VAX-11/780, and 3B20S computers, a set of scripts of typical software
development command mixes were developed and applied to differing
UNIX system configurations. Results indicated that the IBM 3033AP
configuration first put into production was equivalent to several
VAX-ll/780 or PDP-ll/70 systems. Tuning ofthe VAX*, 3B20S, and
System/370 computers has varied these ratios over time, but the
overall order of magnitude spread has been maintained. Use of the
newer IBM 3081K processor has increased capacity by 50 percent, and
evolution to the IBM3084Q promises larger gains. In actual operation
a single large system obtains further efficiencies over the equivalent
number of smaller systems in terms of networking, operation, and
administration. In general, we have found that highly processor
intensive work loads, or work loads requiring a lot of parallel file
system I/O, run relatively better on the large System/370 machine;
work loads characterized by many short interactions, context switches,
and character-oriented I/O run relatively more poorly.

Typical operational parameters of an IBM 3033AP are 150 simul
taneous users (upwards of 200 have been observed), 600 active proc
esses (upwards of 1000 have been observed), 90-percent CPU usage on
both processors, and 10- to 20-percent usage of the I/O channels.

IV. INITIAL APPLICATION

4.1 Porting the application software

In early 1981 a production UNIX system was running on an IBM
3033AP in the Bell Laboratories Indian Hill Computation Center. The
next step was to port the application software tools of the 5ESS switch
development environment from the PDP-ll/70 computers to the
3033AP. Over 300 tools, written in both C and shell command lan
guage, were identified and examined. After careful study, almost half
of the tools were found to be little-used and were eliminated as
candidates for porting to the 3033AP. The C programs required
recompiling to generate objects that would run on a 3033AP; in general,
they complied without problems. The shell scripts were carried over
with almost no problems. Regression tests were used on the various C
compilers to test all the compiler, assembler, and loader functions,
and other programs were unit tested. System testing, which consisted
primarily of generating the system software for the 5ESS switch, was
then done.

In general the porting went very smoothly, with only minor prob
lems. To the application program developer and user, the System/370

* Trademark of Digital Equipment Corporation.

IMPLEMENTATION 1763



appeared to be the same as the UNIX system on the minicomputers
that they were using. The effort to port the application tools was small
and again proved the strength and computer independence of the
UNIX operating system and the associated application programs.

4.2 User migration

After testing the UNIX operating system and the application soft
ware tools, the users were migrated from the PDP-ll/70 computers to
the 3033AP. To avoid a significant impact on the development of the
5ESS switch, a gradual rather than a flash migration was selected.
The 3033AP was networked into the nine PDP-ll/70s and appeared
as the tenth system. This allowed moving a subset of the users to the
3033AP but required continuing the multicomputer procedures to
generate the software for the 5ESS switch. About 10 percent of the
users were moved on a weekend every two weeks. This allowed the
staff that was in charge of the migrations to work with these users,
identify any special needs, and solve the small number of problems
that came up with each group. The users experienced no problems
with the use of the new machine because they saw the same user
interface as before. This allowed the migration to proceed without the
cost of any user education or any lost time as the users learned the
new system.

4.3 Reliability

The combination of complex hardware with an attached processor
configuration and the Series/1 front-end processor plus the three
software packages (IBM Resident Supervisor, UNIX System Super
visor, and Series 1 Terminal Handler) all interacting initially produced
an availability of 80 percent. Even with 80 percent availability the
project made progress faster than ever with the addition of a large
concentrated processor. By the final migration the availability was
improved to the 95-percent range. In the next six months the availa
bility was improved to the 97- to 98-percent range, where it has
stabilized. This is the same range as the mature TSS/370 operating
system running on similar hardware. While there were some early
problems, they were much less than we had ever experienced in
transferring a project to a new operating system and the reliability
that is associated with very mature operating systems was reached
more quickly than we had ever experienced.

4.4 Multiple System/370 environment

As the development project for the 5ESS switch continued to grow,
additional System/370 machines were added to the environment. The
multiple PDP-ll/70 software was ported to the IBM environment,

1764 TECHNICAL JOURNAL, OCTOBER 1984



and successful multimachine operation was again in place. The current
environment includes IBM 3033AP, 3033UP, and 3081K systems. The
first application of a IBM 3081K processor with approximately 50
percent more throughput than the 3033AP was in early 1983. This
new system was brought up with the UNIX operating system and the
applications tools with no changes. From the first day it displayed the
reliability of a mature system.

4.5 Experience summary

The UNIX operating system with the Programmer's Workbench
software has proven to be an excellent system to support software
development. Our experience in developing the software for the 5ESS
switch has shown that there is a limit to the size of a software project
that can be supported on minicomputers. Up to now the UNIX
operating system was not available on the large mainframe computers
that are necessary to provide the computing resources needed by
a large project. With moving the UNIX operating system to
Systemj370 class mainframe systems, large projects can now take
advantage of the UNIX operating system and its tools.

v. CONClUSIONS

The UNIX system for Systemj370 has now been in production
service for over two years, primarily in support of the development
project for the 5ESS switch. The growth in the number of systems
and the diversity ofthe IBM processors used (3031AP, 3033U, 3033AP,
3081K, and 4341) both testify to the success ofthe concept of a UNIX
system implementation for mainframe computers. Several innovative
features of the Systemj370 implementation, such as the use of sema
phores for process synchronization, have been found useful in other
UNIX system implementations.

The proposal to implement the UNIX system on a large mainframe
computer was initially met with some skepticism. This may have been
in part a result of the "small is beautiful" argument, and the feeling
that operating systems for large mainframes were themselves neces
sarily large, complex, and difficult to use. We hope that the
Systemj370 implementation has helped to demonstrate that this is
not true. The availability of the UNIX system on a large mainframe
has again raised the issue of small versus large machines; e.g., should
an installation buy several small systems, or would one large main
frame be better? There is, in fact, nothing inherently better about
either large or small systems; the decision should be based on the
user's requirements, the character of the work load, and the overall
cost.

IMPLEMENTATION 1765



The UNIX system is the only operating system available that runs
on everything from one-chip microcomputers to the largest general
purpose mainframes. While this represents at least a two-orders-of
magnitude range in power and capacity, functionally the environments
are the same; most programs that execute in one environment will
execute in the other without change. The ability of the UNIX system
to gracefully span the range from microcomputers to high-end main
frames is a tribute to its initial design over a decade ago and to its
careful evolution.

REFERENCES

1. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C
Programs and the UNIX System," B.S.T.J., 57, No.6 (July-August 1978), pp.
2021-48.

2. IBM System/370 Principles of Operation, Ninth Edition (October 1981), GA22-7000
8, IBM Corporation.

3. W. B. Smith and F. T. Andrews, Jr., "No.5 ESS - Overview," Bell Telephone
Laboratories; International Switching Symposium, Montreal, Canada, September
1981.

4. T. A. Dolotta, R. C. Haight, and J. R. Mashey, "UNIX Time-Sharing System: The
Programmer's Workbench," B.S.T.J., 57, No.6 (July-August 1978), pp. 2177
200.

5. IBM System/360 Time Sharing System: System LogicSummary, Third Edition (June
1970), GY28-2009-2, IBM Corporation.

AUTHORS

William A. Felton, B.S. (Physics), 1965, and M.S. (Computer Science), 1967,
Ohio State University; AT&T Bell Laboratories, 1967-. Mr. Felton first
worked in a variety of system programming assignments in the Indian Hill
Computation Center, primarily with the TSS operating system. In 1978 he
began a field assignment in Holmdel to develop a UNIX system implementa
tion for System/370 computers. He returned to Indian Hill in 1980 as a
Supervisor in the Computation Center; he currently supervises the Large
UNIX Systems Group. Member, ACM.

Gerald L. Miller, B.S. (Electrical Engineering), 1960, University ofWiscon
sin; M.S. (Electrical Engineering), 1965, Ohio State University; MBA, 1978,
University of Chicago; AT&T Bell Laboratories, 1960-. Since joining AT&T
Bell Laboratories, Mr. Miller has had various assignments in the development
of the No.5 Crossbar, 2 ESS""', 3 ESS, and 5 ESS switching systems. From
1981 to 1984 he supervised the Program Development Engineering group
administering the UNIX operating system based computers used in developing
the 5ESS switching system software. Mr. Miller currently is supervising the
generation of a incremental development system for 5ESS switching system
software. Member, IEEE, Eta Kappa Nu, Sigma Xi, Beta Gamma Sigma.

J. Michael Milner, B.S. (Electrical Engineering), 1972, The Massachusetts
Institute of Technology; M.S. (Computer Science), 1975, and Ph.D. (Computer
Science), 1976, University of Illinois; AT&T Bell Laboratories, 1976-. At
AT&T Bell Laboratories, Mr. Milner first worked on the initial software
architecture of the 5ESS switching system. Since 1979 he has been involved

1766 TECHNICAL JOURNAL, OCTOBER 1984



in the design and implementation of the software development environment
for the 5ESS switching system, with emphasis on software generation systems
for microprocessors. At present he manages the 5ESS Switch Development
Computing Capacity and Performance group. Mr. Milner's current interests
are distributed computing for large-scale software development and architec
ture of software development environments. Member, ACM.

IMPLEMENTATION 1767


