
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

UNIX Operating System Porting Experiences

By D. E. BODENSTAB,* T. F. HOUGHTON,* K. A. KELLEMAN,*
G. RONKIN,t and E. P. SCHAN*

(Manuscript received January 9, 1984)

One of the reasons for the dramatic growth in popularity of the UNIX™
operating system is the portability of both the operating system and its
associated user-level programs. This paper highlights the portability of the
UNIX operating system, presents some general porting considerations, and
shows how some of the ideas were used in actual UNIX operating system
porting efforts. Discussions of the efforts associated with porting the UNIX
operating system to an Intel" 808B-based system, two UN IVAC™ 1100
Series processors, and the AT&T 3B20S and 3B5 minicomputers are pre­
sented.

I. INTRODUCTION

One of the reasons for the dramatic growth in popularity of the
UNIX 1

,2 operating system is the high degree of portability" exhibited
by the operating system and its associated user-level programs. Al­
though developed in 1969 on a Digital Equipment Corporation PDP­
7*, the UNIX operating system has since been ported to a number of
processors varying in size from 16-bit microprocessors to 32-bit main-

* AT&T Bell Laboratories. t AT&T Bell Laboratories; present affiliation
Bell Communications Research, Inc.

*Trademark of Digital Equipment Corporation.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1769

frames. This high degree of portability has made the UNIX operating
system a candidate to meet the diverse computing needs of the office
and computing center environments.

This paper highlights some of the porting issues associated with
porting the UNIX operating system to a variety of processors. The
bulk of the paper discusses issues associated with porting the UNIX
operating system kernel. User-level porting issues are not discussed in
detail. However, some architectural issues (e.g., byte ordering) are
common to both user- and kernel-level code. The processors discussed
are the Intel* 8086 microprocessor, the AT&T 3B20S minicomputer,
the AT&T 3B5 minicomputer, and the UNIVAC t 1100 Series main­
frames.

II. PORTING ISSUES

"Given that I have processor X, what do I have to do to get the
UNIX operating system up and running on that processor?" This is
the first question that should be in the mind of anyone interested in
porting the UNIX operating system to another processor. Before the
porting is to begin this question should be refined into the following
questions:

1. Of the existing processors that support the UNIX operating
system, which one will be used as the base? That is, which UNIX
operating system source will be used as the starting point of the port
(e.g., that of the PDP-11/70:l: or VAX-11/780:l: minicomputers)?

2. Is the software generation system (i.e., compiler, assembler,
loader) for the target processor available?

3. Is there a mechanism to load object code into the target proces-
sor?

4. Is there a mechanism to make the initial file system?
5. Are kernel-level debugging tools available?
The following sections give guidelines to help answer these ques­

tions.

2.1 Choosing the appropriate source base

Before any kernel source modifications are attempted, the appro­
priate base must be chosen. This decision should be based on several
criteria that evolve around the architecture of the target processor:

1. Word size.
2. Byte ordering. Are bytes within a word ordered in the same way?

* Trademark of Intel Corporation.
t Trademark of Sperry Corporation.
*Trademark of Digital Equipment Corporation.

1770 TECHNICAL JOURNAL, OCTOBER 1984

3. Interrupt structure. Are interrupts handled in a similar way?
4. Input/Output (I/O) architecture. Are intelligent controllers sup­

ported?
5. Peripheral support. Do common device drivers exist?
Therefore, if the target processor is a 16-bit microcomputer, the

source ofthe PDP-ll/70 processor could be used as a base. Likewise,
if the target processor is a 32-bit minicomputer, the source of the
VAX-ll/780 computer could be used as a base.

2.2 Portable software development system

If any piece of software is to be portable, it should be written in a
high-level language capable of running efficiently on a large number
of processors. The C programming language," the primary language of
the UNIX operating system, is a language that meets this criterion.

Although not originally written with portability in mind, the UNIX
operating system and C have been enhanced to obtain maximal port­
ability. Beginning with the Version 7 release, the UNIX operating
system has decreased its use of machine language and restricted
processor-dependent C code to particular files within the kernel. The
development of the portable C compiler, pee, has greatly improved
the portability of both the C language and the UNIX operating system.
The portable concept has been expanded to a portable assembler and
a portable loader. Together, these portable-tools are bundled into a
common Software Generation System (SGS). Also included in the
common SGS is a Common Object File Format (COFF) and a portable
archive file format. Because of this commonality, an SGS and a cross­
SGS can be developed for a target processor by changing only the
processor-dependent portions of the SGS.

2.3 Executing object files on the target processor

If the target of the port is a stand-alone processor, a host processor
is used as a base of operations during the development stages.* All
programs are compiled through a cross-SGS and, possibly, tested
through a simulator on the host before being placed on the target
processor. However, since the target and host processors are inde­
pendent, a mechanism should exist to allow the host to down load
compiled code into the memory of the target processor. This is typically
done by connecting the two processors by means of an asynchronous
communication line and using simple file transfer programs to popu­
late the memory of the target processor. Once the executable code has

* This is typically the case. However, in the case of the UNIVAC 1100 Series the
UNIX operating system runs as a task on top of the resident operating system.
Therefore, the target and host are the same processor. (See Section IV.)

PORTING 1771

been placed in memory, its execution must be started by some form of
bootstrap monitor. The monitor should give the user the ability to
examine memory locations, start and stop program execution, etc. If
a bootstrap monitor is not available, it should be developed and placed
on the target processor in a manner that will facilitate easy start-up
[i.e., read from a floppy disk, placed in Read-Only Memory (ROM),
etc.].

2.4 Initializing the file system
As the porting effort progresses, the time will come when it is

necessary for the target processor to perform UNIX system file ac­
cesses. For those lucky enough to have common peripherals this poses
no problem. The file systems can be made and populated on the host
and placed on the target.

However, if the target and host have no common disk devices, a
potential problem exists. This problem could be solved by using a
modified memory down-load program. The memory down-load pro­
gram could be modified to place the data read from the communication
line onto the disk, instead of in memory. This, of course, means that
a stand-alone disk driver would have to be incorporated into the down­
load program.

2.5 Kernel debugging

Two forms of kernel debugging are necessary:
1. Those used to debug a kernel that fails to boot.
2. Those used to debug a kernel that crashes unexpectedly.
For the former case, appropriately placed print statements could be

used to trace the execution steps of a suspect operating system. If a
bootstrap monitor with a breakpointing capability is available, a
breakpoint could also be placed at a suspect point. When the processor
reaches the breakpoint, the status of the machine (e.g., examine
registers, perform a stack back-trace, etc.) could be examined to try to
uncover the error.

In those cases where the system crashes unexpectedly, some form
of postmortem debugger should be available. The debugger should be
capable of running on either the host or target machine and should
have the ability to display the contents of key data structures. A stack
back-trace option would also be useful.

2.6 Caveats

The suggestions presented in the previous sections are not meant
to be an all-encompassing survey. They are meant only to inspire
thoughts by presenting some of the possibilities that exist. The follow-

1772 TECHNICAL JOURNAL, OCTOBER 1984

ing sections describe how some of these ideas were used in porting the
UNIX operating system to various processors.

III. THE UNIX OPERATING SYSTEM ON THE INTEL 8086

The UNIX operating system for the Intel 8086, referred to as the
8086 UNIX system, was developed in 1978 to run on a system specif­
ically designed for the Intel 8086 microprocessor. The system was
designed for, and is currently used in, some internal AT&T applica­
tions.

The central processing element of the 8086 UNIX system is the
Intel 8086 microprocessor." Main memory can range from 512K bytes
to 2M bytes and is accessed via a Memory Management Unit (MMU).
Three types of peripheral controllers are supported:

1. Disk controller. Facilities exist to support floppy and Winchester
disk devices with capacities of 2M bytes and 20M bytes, respectively.

2. Line controller. The line controller is a programmable device
that supports serial synchronous or asynchronous communication
protocols.

3. Terminal controller. The terminal controller is a communications
device capable of supporting 16 teletype Standard Serial Interface
(SSI) lines.

3.1 Hardware-related porting issues

3.1.1 Memory management unit

Two hardware features are essential to support the secure multiuser
environment that is needed by the UNIX operating system:

1. An address space larger than 64K bytes
2. Privileged (kernel) and nonprivileged (user) modes.
Because a stand-alone 8086 cannot support these features, an MMU

was specially designed for the 8086 UNIX system. The MMU is similar
to that of the PDP-ll/70; 16-bit virtual addresses are translated into
22-bit physical addresses through the use of mapping tables and page
address registers. The MMU consists of 16 address maps, where each
map addresses 64K bytes of memory. The most commonly used address
maps are in kernel instruction, kernel data, and exit kernel (user­
mode) maps. The larger address space is provided by allowing for split
Instruction and Data space (lID). With split IjD, programs can
address up to 64K bytes of text and 64K bytes of data. Split I/D is
easily achieved by using two 64K-byte address maps, one for the text
segment and the other for the data and stack segments. The division
between kernel and user modes is achieved by mapping all user
programs through the exit kernel map. While in user mode, any
privileged memory accesses or attempts to alter the status of system

PORTING 1773

execution (disable interrupts) by user programs results in a trap to a
low-level handling routine where the problem will be rectified.

3.1.2 Peripheral controllers
The peripheral controllers share a basic scheme. In addition to its

intrinsic hardware, each controller consists of a Zilog Z80* micropro­
cessor with 32K bytes of Random Access Memory (RAM). This extra
computing power permits greater flexibility in software controller
development. Efficient disk search algorithms and line protocols are
handled on the controlling device, thus eliminating the need for central
processor intervention. -

The 8086 communicates with each controller via a one-way shared­
memory scheme; the 8086 can access the controller's memory but not
vice versa. A kernel routine, window, exists to place the device specific
address into a given location in the kernel data map, thus creating a
window to that device.

3.2 Architectural and software-related porting issues

Porting the UNIX operating system to the 8086 required software
changes at the operating system, library routine, and user-program
levels. Because of the similarities between the MMU's of the 8086
UNIX system and the PDP-ll/70 system, the PDP-ll/70 version of
the UNIX operating system was used as the basis for the 8086 UNIX
system porting effort. A PDP-ll/70 computer was also used as the
host processor for 8086 UNIX system development.

Several software changes were necessitated by hardware differences
between the PDP-ll/70 processor and the 8086. The obvious changes
included translating the assembly language routines in the UNIX
operating system into 8086 assembly language and modifying the low
core-interrupt routines to fit the 8086 UNIX system hardware. Several
other basic hardware differences between the PDP-ll/70 and the 8086
devices also had to be overcome.

3.2.1 Byte ordering
While the PDP-ll/70 and 8086 processors both utilize the same

byte ordering within a word, the ordering of words within a double
word (long) is reversed. The 8086 implements double words with the
low-order word occupying the least significant bit positions. Any
programs that depended upon this byte ordering (e.g., any program
that read long integer values from files) had to be modified. For
instance, the example shown below will produce different results when

* Trademark of Zilog Inc.

1774 TECHNICAL JOURNAL, OCTOBER 1984

run on a PDP-ll/70 processor using the UNIX system from those
produced on an 8086 UNIX system:

long 1 = OX12345678L;

short *s;

s = (short *) s 1 ;

pr intf ("%#x\n", *s) ;

When run on a PDP-ll/70 processor using the UNIX system the
result will be:

Ox1234

while the 8086 UNIX system will produce:

Ox5678

Also, since the 8086 is byte oriented, odd function addresses are
permitted. The kernel-level signal handling routine, issig, was mod­
ified to compensate for this difference.

3.2.2 System call interface
The PDP-ll/70 version of the UNIX operating system uses self­

modifying code to pass system-call parameters from user to kernel
level. The 8086 UNIX system call interface was changed to use
registers to pass system call parameters. The system call number is
passed in the AX register of the 8086 and the DX register is used for
parameter passing. On calls that require one parameter, that param­
eter is placed in the DX register. In the case where multiple parameters
are required, the DX register contains a pointer to a parameter list.

3.2.3 Run-time calling convention
Calling-convention routines for the 8086 UNIX system (i.e., code

added to implement stack frames) are also different. Since the 8086
does not have hardware restart capabilities, the user stack must be
expanded gradually during the local storage allocation process to
permit the proper handling of stack warning interrupts. This function
is performed by a special function that is called in place of the normal
runtime routine when local variables are present. In the process of
growing the stack this function clears each word, thus ensuring that
each local variable will be initialized to zero.

3.3 Development and test environment
3.3.1 The 8086 UNIX system SGS
Early 8086 UNIX system development was done using an already

existing, internally developed 8086 simulator and a common SGS

PORTING 1775

referred to as the Basic-16 package. Because the 8086 system was
designed to make use ofthe majority ofthe user- and kernel-level code
of the PDP-11j70 version of the UNIX operating system, the object
file format of the 8086 system is similar to that PDP-11j70 version.
Therefore, a tool was developed to convert the common object file
format of the Basic-If SGS to the 8086 UNIX system object file
format. In addition, the 8086 system object file format was changed to
include symbolic debugging information.

An SGS designed around the Basic-If SGS was later developed to
run on the 8086 UNIX system. The new SGS uses the Basic-16
compiler, a modified Basic-16 assembler, and a modified PDP-11j70
loader to directly produce 8086 UNIX system object files. Using the
symbolic debugging information produced by the SGS, sdb, a symbolic
debugger, was ported to the 8086 UNIX system.

3.3.2 The 8086 UNIX system firmware monitor

A firmware monitor was written specifically for the 8086 UNIX
system. Stored in ROM, the monitor is activated on power-up and has
its own command language that allows the user to examine memory,
set breakpoints in memory, talk through to the host PDP-11j70
processor, etc. The monitor also allowed the user to down load pro­
grams directly into the memory of the 8086 UNIX system.

Because the 8086 UNIX system used a Winchester disk that was
not common to the host processor, a stand-alone rnkfs (Make File
System) program was developed to initialize the file system. The stand­
alone rnkfs was down loaded into the memory of the 8086 UNIX
system by a monitor command. Once execution began, the rnkfs

program performed a handshaking operation with the host to transfer
files over an RS-232 port to the 8086 UNIX system disk.

3.4 Status

As we previously mentioned, the 8086 UNIX system is currently
used as the basis for an internal AT&T application. As of this writing,
the 8086 system supports UNIX System III. However, through kernel
modifications similar to those used on the PDP-11j70 version, the
8086 system could be made to support UNIX system V.*
IV. THE UNIX OPERATING SYSTEM ON THE UNIVAC 1100 SERIES

The UNIX system for the UNIVAC 1100 Series" runs on Sperry

* Due to addressing limitations a memory management scheme referred to as over­
laying was added to support UNIX System V on the PDP-11/70 system. The "Overlay"
technique could be achieved by using the indexing capability of the 8086 and the unused
kernel segment maps in the MMU of the 8086 UNIX system. Infrequently executed
code could be addressed through the segment registers by appropriately adjusting the
index registers.

1776 TECHNICAL JOURNAL, OCTOBER 1984

1100/60 and 1100/80 processors. These processors have similar but
not identical instruction sets. They run time-sharing, batch, transac­
tion, and communications real-time programs, simultaneously, if de­
sired, under the control of the OS 1100 operating system (commonly
called EXEC). Each processor type can operate in configurations of
from one to four Central Processing Units (CPUs) with one to four
I/O processors (not all combinations are supported). Processor types
cannot be mixed in a single configuration.

The UNIX system for the UNIVAC 1100 series was built as an
integrated development environment for transactions that run directly
on EXEC. Unlike most other implementations, therefore, it runs not
directly on the hardware but as a collection of user-level activities
under control of EXEC. These obtain services that would normally be
provided by device drivers, and some process creation and management
services from EXEC. Any configuration supplied by Sperry, including
multiprocessor ones, can run the UNIX system.

4.1 Effects of hardware architecture on porting

Like all UNIX system implementations, this one dealt with pecu­
liarities of the target system architecture. The 1100 hardware archi­
tecture differs from other architectures to which the UNIX system
has been transported in a number of ways. These differences are
discussed below.

4.1.1 Data type size

The 1100 C implementation has 9-bit characters (bytes), I8-bit
shorts, and 36-bit integer and unsigned data types (longs are also 36
bits). The compiler does not attempt to make these types look like 8­
bit multiple lengths to the programmer; the writer or transporter of
code dependent on 8-bit bytes for proper functioning is responsible
for making the code work with 9-bit bytes, or better, making the code
portable.

4.1.2 Word addressing

The machine addresses words rather than bytes. All extension of
the operator code field of the instruction can designate to which
quarter of the operand the operation applies. Use of this feature
requires compile time knowledge of the byte address, which is possible
for cases such as references to automatics and structure leaves, but
not for the dereferencing of pointers. Pointers contain a simulated
byte address that must be dereferenced by generated code rather than
addressing hardware. Since this has a considerable adverse effect on
performance, the format of pointers was carefully designed to minimize
the execution time of this generated code. Early versions of the
compiler used simulated byte addresses to aid portability of existing

PORTING 1777

code; later versions used pointers containing a word address in the
less significant (right) word half and a byte offset in the left half.

4.1.3 One complement

The 1100 processors use one's complement arithmetic. The compiler
makes no attempt to simulate two's complement arithmetic. As is the
case with the byte size, writers or transporters of code must be aware
of this difference. Fortunately, in actual practice, problems caused by
one's complement arithmetic are rare. (Some of the nastiest ones are
in the C compiler itself!)

4.1.4 Floating point

There is little uniformity of floating point formats among main­
frames, and the 1100 series is no exception. The greatest difficulty
was caused by the assumption embedded in the compiler's portable
code, that a double may be made from a float by extending the mantissa
with a word of zeros; on an 1100, the characteristics differ in size as
well.

4.1.5 Banking

Memory management hardware on 1100/60 and 1100/80 processors
maps program virtual addresses into the physical addresses of seg­
ments, or banks. These processors are atypical in that a given virtual
address may refer to more than one physical address. In this case,
disambiguation is by context, [i.e., whether the fetch is text or data,
or which of two sets of mapping registers is active (an ambiguous
virtual address will be resolved in favor of the active set)]. Each of
these two sets has basing registers for a text segment (I bank) and a
data segment (D bank). Therefore, only four banks can be addressable
at anyone time. To make another bank accessible, its address and
limits must replace those of a currently based bank in at least one of
the mapping registers. This is done by an instruction, which may be
executed by user programs as well as EXEC. The implications of this
unusual memory management scheme are that:

1. Since segments are a scarce resource, numerous bank switches
must be done to accomplish UNIX system kernel functions.

2. The ability to address multiple-user and kernel-user address
spaces is limited.

3. Demand paging is not possible.
4. The bank-switch mechanism used for system calls is more effi­

cient than the processor-state switch used by most machines.

4.2 Layered implementation
4.2.1 Advantages and constraints
The advantages of basing a UNIX system upon a vendor's standard

1778 TECHNICAL JOURNAL, OCTOBER 1984

operating system, rather than bare hardware, outweigh the disadvan­
tages for the system's intended use as an integrated development
environment. The system is widely marketable to 1100 customers
since all eligible hardware runs the same operating system (EXEC),
necessary EXEC changes are distributed and supported by Sperry,
and no existing capabilities (transactions, etc.) are removed from a
machine by installing a UNIX system.

The system functions as an integrated development environment
supporting the C Transaction Environment (an internal product dif­
ferent from the UNIX system, and one not commercially available for
part of the licensed package). This C Transaction Environment has a
compatible system call subset, supporting transactions against a Data
Base Management System (DBMS). The UNIX system has extensions
that allow processes to access parts of the EXEC environment. EXEC
files may be reached from within the UNIX system with special path
names. A character device creates EXEC time-sharing sessions on
virtual terminals. These sessions may communicate directly with the
UNIX system user via a cu-like command. Shells using this feature
contribute extensively to the ease of transport of programs from the
development environment to the transaction execution environment.
Access to the system from EXEC batch runs is also possible, which
facilitates system administration by console operators not familiar
with the UNIX system.

Implementation under the EXEC also imposes some constraints.
The EXEC analog of a process is called an activity. A process maps
to an activity, but an activity has no unique address space of its own,
so the UNIX system kernel fork system call must manage the banks
for each process after using an EXEC primitive to create an activity.
EXEC groups activities into runs, which are normally but not invari­
ably associated with a terminal. UNIX system process activities must
span a collection of runs for performance reasons. Creation of an
EXEC activity in another run is not possible, so there cannot be a
single parent for all processes. A new run is created by each user
logging in, which contains all of the processes created by that user.
All system calls return results as if process 1 did exist. EXEC file
assigns (used by block devices) are accomplished by a run. Each run
of a group of runs desiring to assign a file must do so separately.
Similarly, EXEC has an analog to signals among activities within a
run but not among runs. Such sharing among runs requires a set of
local daemon activities for each run to service the shared status data,
adding nontrivially to the complexity of the kernel.

4.2.2 Exclusion

The use of exclusion primitives to protect shared kernel data is

PORTING 1779

necessary not only to handle multiple processors without races, but
on a single processor system as well, since user-level EXEC activities
can be arbitrarily preempted in kernel code and resumed in an arbi­
trary order. The hardware provides instructions for this purpose; the
UNIX system kernel uses EXEC primitives based upon those instruc­
tions that queue blocked processes to avoid excessive EXEC dispatcher
traffic.

4.2.3 Block and character devices
There is only one block-device type (major). Each minor device

number is mapped to a different file name in the EXEC file system.
The complete file structure in a UNIX system is present inside one of
these EXEC files. File system block size is 3584 bytes. This size,
unusual in that it is not a power of 2, is due to constraints imposed by
use of EXEC I/O and disk controller microcode. The I/O itself is done
with EXEC primitives rather than channel programs to bare hardware.
It is otherwise unremarkable; in fact, management of file assigns
among multiple runs is a much more difficult problem.

Of the character devices, the terminal driver is the most interesting.
The low-level portion of it is a set of real-time EXEC communications
activities. The resulting terminal interface has complete UNIX system
character processing capabilities; full-duplex and character editing
functions are available without modifying or bypassing the EXEC,
and without an external front-end processor. The character processing
overhead incurred by not having a front end is noticeable but no worse
than that incurred by users of the conventional 1100 time-sharing
terminal interface.

V. THE UNIX OPERATING SYSTEM ON THE 38205 MINICOMPUTER

The AT&T 3B20S minicomputer" is a 32-bit minicomputer that was
originally designed and developed to be used in telephone switching
systems. The switching version of the 3B20 minicomputer, known as
the 3B20 Duplex or 3B20D minicomputer, has duplicated CPU, mem­
ory, and DMA hardware components. A 3B20D minicomputer can be
easily converted into two independent simplex machines. The 3B20S
minicomputer, a repackaged half of a 3B20D minicomputer, is being
used throughout AT&T as a general-purpose minicomputer. The latest
version of the 3B20 minicomputer, the 3B20A minicomputer, has the
two processor halves reunited, working in parallel as a multiprocessor
unit.

5.1 Hardware-related porting issues
5.1.1 Memory management
The 3B20 minicomputer employs a two-level segmented and paged

1780 TECHNICAL JOURNAL, OCTOBER 1984

memory-address translation scheme similar to that of the IBM 370. A
virtual address is 24 bits long, pages are 2K bytes, segments contain
64 pages, and each address space contains 128 segments. The original
3B20 minicomputer kernel was derived from the UNIX System III
VAX-ll/780 implementation. Both were swapping systems; however,
the 3B20 minicomputer system used segments for managing the ad­
dress space of user programs, while the VAX* system used pages.
Employing segments made the implementation of shared text and
shared memory simple; shared data pages had a common page table
mapped by the segment table of the processes involved. A software
segment table paralleled the hardware segment table and described
what each segment contained: text, data, stack, or shared data.

With the addition of demand paging to UNIX System V, 3B20
minicomputers and VAX machines running UNIX systems have been
unified in memory-management design and implementation. Both
systems use logical segments or regions of contiguous pages and page­
table entries as their basis.

5.1.2 I/O system
Perhaps the most unusual feature of the 3B20 minicomputer is its

I/O architecture. There are two major types of I/O device controllers:
the Input Output Processor (IOP) and the Disk File Controller (DFC).
Both types are coupled to the CPU and DMA through high-speed
serial data links.

The IOP is constructed of two levels: The first level, or front end,
performs maintenance and data concentration functions for the second
level of up to 16 Peripheral Controllers (PCs). The IOP driver reflects
the two-level structure of the hardware. A common driver performs
all maintenance and communication functions, and uses a switch table
to pass completion reports to PC drivers.

PC drivers are generally less or equal in complexity to drivers written
for other machines. For example, the teletypewriter (TTY) PC driver's
only function is to provide data buffering, while all the UNIX system
character processing functions are implemented in the PC itself.

The Disk File Controller (DFC) interfaces with up to four Moving
Head Disks (MHDs). The DFC can buffer up to 256 I/O requests, and
optionally it will execute an elevator alogorithm to minimize disk head
movement.

lOP and DFC drivers communicate with their device controllers
through message queues contained in main memory. Each controller
has at least two queues: a command queue where the driver puts I/O
requests, and a report queue where the controller returns the status of

* Trademark of Digital Equipment Corporation.

PORTING 1781

I/O requests that have been completed. To request an I/O operation,
the driver loads a message into the command queue. Next, the con­
troller reads the message DMA, processes it, and then puts a request
completion message into the report queue. All the PCs on an lOP
share a single pair of message queues.

A feature of the 3B20 minicomputer is that each DFC, lOP, MHD,
and PC unit can be powered off or physically disconnected while the
rest of the system is still active. Each unit can be logically in service
or out of service, and the two new user-level commands were created
to support this feature:

don Restore device to service (device on-line).
dof f Remove device from service (device off-line).

While a unit is off-line, it can be diagnosed and repaired if necessary,
and then restored to service. About one half of the total lOP and DFC
driver code is used to support these maintenance features. PC drivers
do not contain any maintenance code, but they do contain code to
handle in service and out of service command requests.

5.2 Architectural and software-related porting issues

The 3B20 minicomputer has a CPU architecture typical of most
minicomputers: 12 general-purpose registers, an orthogonal basic in­
struction set with eight addressing modes, plus additional special­
purpose instructions for moving data, manipulating strings, and per­
forming I/O and maintenance functions.

5.2.1 Byte ordering

Many of the problems encountered when porting software to a new
processor have to do with byte ordering. The 3B20 minicomputer has
the opposite byte ordering of the VAX minicomputer. Carelessly
written programs may not be portable between different execution
environments. For example, this program fragment will produce un­
expected results on the 3B20 minicomputer processor:

int e = 'A';
write(fd, &e, 1);

The wrong byte address is passed to the subroutine, and a null byte
will be written.

A second more subtle difference between the VAX and the 3B20
minicomputers is that the latter requires data objects to be aligned on
their natural boundaries.* This example will cause a processor trap on
the 3B20 minicomputer:

* A long is a line on a four-byte boundary, and a short is a line on a two-byte boundary.

1782 TECHNICAL JOURNAL, OCTOBER 1984

short a[10];
int *p;
p=&a[1];
*p = 0;

The program is attempting to reference a word on an inappropriate
boundary.

Both of the fragments listed above are examples of dubious program­
ming practice. Fortunately, the UNIX system kernel is generally free
of such flaws, and most user-level code had already been ported to the
IBM 3708, a processor that has the same byte ordering as the 3B20
minicomputer, before the 3B20 minicomputer effort started.

5.3 Development and test environment

The 3B20 minicomputer operating system was developed in a host/
target environment. The host was a PDP-ll/70 processor running the
UNIX Real-Time (RT) operating system." The link between the host
and target was a 9.6K-baud asynchronous port. On the 3B20 minicom­
puter end of the link was a hardware debugging tool known as the
Micro-Level Test Set (MLTS). From the MLTS, any bit or byte of
the machine can be accessed even while the processor is running. The
initial system debugging was conducted entirely through the MLTS.

5.3.1 3820S minicomputer SGS

The PDP-ll/70 host machine supported a 3B20 minicomputer
cross-SGS, based on the now standard Common Object File Format
(COFF). Operating system object files were down loaded into the
target memory through the MLTS link. Until the SGS was ported to
the 3B20 minicomputer, commands were transported to it from the
host via magnetic tape. Producing 32-bit object files on a 16-bit
processor is a difficult job; the SGS uses a software paging scheme to
handle the difference in address space size. Once the 3B20 minicom­
puter system was stable and the SGS was ported to it, the symbolic
debugger, sdb, was modified to use the COFF. The VAX system has
since converted to the COFF.

5.3.2 Kernel debugging tools

Debugging an operating system kernel can be tedious. A common
technique used for debugging is to insert print statements into the
source so that the kernel can be tracked while it executes. The 3B20
minicomputer has no generally available nonprogrammable TTY I/O

* The UNIX-RT operating system is an updated version of the Multi-Environment
Real-Time (MERT)9 operating system, a variant of the UNIX operating system with
real-time support.

PORTING 1783

device, like the DEC* KL-11. Messages cannot be written to a TTY
until after the kernel has bootstrapped itself and a TTY PC has been
brought into service via don. This deficiency makes low-level debug­
ging with print statements impossible, but the problem has been turned
around to produce an extremely valuable debugging tool. All kernel­
generated messages are saved in a circular memory buffer and saved
permanently in any memory dump for future reference. The same
scheme has since been adopted for the VAX kernel.

A major milestone in bringing a machine to life is creating the first
root file system. The first step was to create an empty file system. A
version of the kernel with the make file system (mkfs) command built
into it was created to do the job. A system call was invented to allow
mk f s to open a file by major and minor device number rather than by
name. The second step was to populate the file system. Again, a special
system version was built to do the job. Only two commands were
needed: some form of the shell and some form of file copy. At this
point, a system with a rudimentary initialization process built into it
was booted and the remainder of the file system was populated by
copying files from magnetic tape. An important command to get
working early is the file system checker, fsck. Needless to say, the
above series of steps was repeated many times before the system was
stable enough to check its own root file system.

5.4 Status

The first 3B20 minicomputer-based UNIX system was deployed in
July of 1981. Since then, both the operating system and the hardware
have matured greatly. For example, over a dozen new peripherals have
been added, and the instruction set has been expanded to support the
IEEE floating-point standard and C-style string manipulations. The
system refinements take full advantage of the 3B20 minicomputer
hardware and upgrade the standard UNIX system features for 32-bit
machines. These changes include a 1K-byte block file system and
demand paging. The more recent 3B20 minicomputer hardware and
software development is a multiprocessor UNIX system.

VI. THEUNIX OPERATING SYSTEM ON THE AT&T 385
MINICOMPUTER

The AT&T 3B5 minicomputer is a 32-bit minicomputer based on
the WE® 3200010 microprocessor. Development of the UNIX operating
system for the 3B5 minicomputer was started in 1980 at the same time
that the requirements for the hardware and microprocessor were being

* Trademark of Digital Equipment Corporation.

1784 TECHNICAL JOURNAL, OCTOBER 1984

finalized. To minimize the time between the first hardware introduc­
tion and an integrated hardware and software package, extensive use
was made of simulation, emulation, and a cross-development environ­
ment.

6.1 38 family compatibility

The 3B5 minicomputer is a member of the 3B family and thus
shares many architectural features with the 3B20. The main objective
of the 3B family is to provide a very high degree of C language, user­
level program compatibility among members of the family. The 3B5
minicomputer and 3B20 support the same data types and use the
same, bit-for-bit identical representations for each type. That is, byte
ordering, bit significance, alignment restrictions, etc., are the same on
both machines. The two machines also share a common subset of
assembler-level instructions called 1825. This subset is defined to
include all instructions that can be generated by the C language
compiler.

This high degree of C language software compatibility simplified
porting major portions of the operating system software. For example,
the 3B5 minicomputer could automatically take advantage of solutions
to many of the subtle data representation or "byte-order" problems
found during the 3B20 port. However, the machine-dependent portions
of the operating system required significant design effort as a result
of some of the unique architectural characteristics of the 3B5 mini­
computer and the WE 32000. The major areas that needed change
were memory management, process creation, interrupt handling, con­
text switching, system call interface, and exception handling.

6.2 WE 32000 architecture and related porting issues

The WE 32000 is based on a large, single address space, which
contains both the operating system and a user program. External
MMU hardware, through the checking of access rights, provides the
basic protection mechanism in the 3B5 minicomputer. The WE 32000
contains only a few privileged instructions and privileged internal
registers. In addition to the single-kernel single-user address space,
the WE 32000 assumes the use of a single stack for both user and
kernel execution (separate stacks are provided for such things as stack
exception, I/O interrupts, etc.).

6.2.1 System calls

The system call instruction, gate, changes the processor to a
privileged state and passes control to the operating system, but does
not switch to a separate stack. Therefore, the system call interface
had to be carefully designed to avoid the possibility of a security breach

PORTING 1785

arising from the mixture of user and kernel data on the same stack.
The system has to be careful that a stack address, of a buffer for
instance, passed to it is indeed in the user's portion of the stack. Care
was also taken to ensure stack exceptions cannot occur when running
in the kernel mode. This is done by manipulating the stack bounds
registers at the system call interface to guarantee that upon entry to
the system, sufficient stack space is available to complete the system
call. The system call code that handles signals to user programs also
required change. Upon entry, sufficient space (two words) for process­
ing signals is reserved on the stack. If a signal is present at the
completion of the system call, this reserved space is set up with return
information before control is passed to the user's signal handler.

The fork and exec system calls were also affected by the single
stack architecture. Both of these system calls must manipulate the
user's stack. This is difficult to do if the kernel code is also using the
same stack. Code in the system call interface explicitly switches to a
separate stack for these system calls.

6.2.2 Process concept

The WE 32000 includes a notion of a process by providing privileged
instructions that can call a process and return to a previous process.
Process-state information is kept in a Process Control Block (PCB)
data structure. Interrupts are essentially hardware-invoked call proc­
ess instructions. This process concept is used by the 3B5 minicomputer
UNIX system kernel to support user processes and interrupt handling.
Upon interrupt, a process is dispatched by the hardware. All interrupt
processes are part of the kernel, and reside in the system address
space. All interrupt PCBs and stacks are statically allocated in kernel
space. Since interrupt processes are not allowed to suspend themselves,
interrupt processes of equal priority can share the same stack. There­
fore, only one stack is needed per interrupt priority level.

6.2.3 Process switching

When a process is to be switched out, the process switcher (swtch)
sets a Program Interrupt Request (PIR) at priority-level I (the lowest
priority interrupt level). Since a user process runs at interrupt priority­
level 0, the level-l PIR is honored before any other user-level process
is executed. The WE 32000 saves the state of the user process in its
PCB, and dispatches the switcher. The switcher then picks another
process to run, sets up its map, and performs a return process instruc­
tion to transfer control to the new user process.

6.2.4 Memory management

The MMU used for initial 3B5 minicomputer development sup-

1786 TECHNICAL JOURNAL, OCTOBER 1984

ported a 24-bit segmented logical address space and supported virtual
to physical address translation based on contiguous segments. A user
process's virtual address space is divided into two equal address
subspaces, the system space and the user space. A user process running
in kernel mode has access to both address subspaces, whereas a user
process in user mode only has access to the user address subspace.

Translation from a virtual to a physical address is done via map
buffers. A total of 64 maps are supported by the memory management
unit. The system space, by convention, is mapped through map o. The
system space is common to all user processes and is not affected by a
context switch. The 3B5 minicomputer UNIX system kernel resides
in the system address space, and all operating system functions are
shared by all processes and are accessed via the gate mechanism by
user processes. An address in user space is translated by using the
map specified by an "active process ID" register. The operating assigns
maps to user processes, and if more than 63 processes are in main
memory, the maps are time shared.

To ease the sharing of the 63 maps among user processes, a new
entry has been added to the process table to hold the map index if a
map is assigned to the process. When a process is scheduled to run,
the switcher determines if the process currently has a map assigned.
If so, a switch to a user process' address map only requires reloading
the "active process ID" register. If not, the switcher must allocate a
map entry and load the process' map from its "u" area into the memory
management unit. The switcher will either allocate a free map or, if
all maps are in use randomly, deallocate a map owned by a sleeping
process. A map is freed when a process is terminated or swapped.

6.3 Development and test environment
6.3.1 385 minicomputer SGS
Since no 3B5 minicomputer hardware existed at the, time the project

began, it was impossible to develop software for the 3B5 minicomputer
using the native machine. A cross-software generation system based
on the common SGS was developed and run on a VAX-ll/780 proces­
sor. The cross-SGS included a C compiler; assembler; linker and
associated support programs; and generated WE 32000 object code.

6.3.1 Emulation and debugging tools
The initial 3B5 minicomputer development strategy was based on

the use of an emulation for developing virtually all of the software.
An AT&T 3B20S minicomputer was microcoded to emulate the WE
32000 microprocessor and the 3B5 minicomputer. This emulation
included the interrupt controller, programmed interrupts, memory
management, central control Universal Asynchronous Receiver/

PORTING 1787

Transmitter (DART), Asynchronous Data Link Interface (ADLI)
DARTs, Sanity and Interval Timer (SIT) and the Integrated Disk
File Controller (IDFC). From the perspective of a developer, the
emulation was an actual3B5 minicomputer.

During the emulation stage, a 3B20 emulation control program was
used as a debugging tool. The 3B20 minicomputer Emulation Control
Program (MIP) executed on a support PDP-ll/70 processor and
provided a means to control the 3B5 minicomputer emulation micro­
code. Features included the ability to start and stop the emulation,
load emulation memory from a file on the support processor, set and
display registers and memory, and set emulation breakpoints.

Emulation program commands were bundled to form a debugging
package. This package, which is not as yet an official AT&T product,
and its related command language, referred to as the DEMON (DE­
bugging MONitor) monitor, served as the interface between the de­
veloper and the emulation program. DEMON provided debugging
facilities comparable to the emulation control program. In addition,
DEMON provided a single-step program debugging capability, and the
ability to examine memory using physical or virtual addresses. A
dedicated RS-232 link was used to provide down-load/up-load capa­
bility from a support processor. Once the 3B5 minicomputer hardware
was available, a ROM-based version of the DEMON monitor was
developed permitting stand-alone debugging.

6.3.3 Initial file system

Since the 3B5 minicomputer uses a disk drive, which was not
supported on other processors, it was necessary to develop a method
for creating the initial file system for a 3B5 minicomputer. A driver
was developed that treated a block of memory as though it were a
disk-an in-core file system. The cross-mkr s program was created
that would build a file system image within a normal file. Once this
file was loaded into emulation memory by either DEMON or the
emulation control program, the in -core file system driver would access
the data as though the data were the individual blocks of a file system.
This technique had the additional advantage of providing access to a
file system before a functioning disk driver was available. The in-core
file system facility has proved to be a convenient way to move infor­
mation from a support machine to a 3B5 minicomputer and continues
to be used for that purpose.

6.3.4 The ultimate test

The UNIX operating system developed in the emulation environ­
ment was successfully running on actual 3B5 minicomputer hardware
in less than a week after its arrival. This success confirmed the

1788 TECHNICAL JOURNAL, OCTOBER 1984

importance of using an emulation environment to port the UNIX
operating system to a new processor without having the actual hard­
ware.

6.4 Status

The 3B5 minicomputer has been available since October 1982. It
has evolved through two releases. The current release includes the
latest version of the UNIX operating system, as well as support for a
wide range of peripherals. In the future, 3B5 minicomputer will con­
tinue to track standard UNIX operating system releases and increase
the variety of supported peripherals.

6.5 Acknowledgments

The original 8086 UNIX system development was done by Tom
Blumer and Ralph Muha. The authors gratefully acknowledge the
contributions of C. H. Elmendorf and R. A. Kasten in preparing the
3B5 minicomputer section of this article.

VII. CONCLUSION

As technology advances, more processors will be introduced and
software developers will be forced to adapt current software packages
to fit new environments. In these situations the need for portable
software is essential to maintain a familiar user environment. As
evidenced by the previous sections, the UNIX operating system and
its associated user-level programs have proven, and continue to prove,
to be extremely portable. Because portability is a fundamental part of
the UNIX system philosophy, the UNIX operating system can be
made to adapt to the diverse computing environment that results from
continuous technological advances.

REFERENCES

1. D. M. Ritchie and K. Thompson, "UNIX Time-Sharing System: The UNIX Time­
Sharing System," B.S.T.J., 57, No.6, Part 2 (July-August 1978), pp. 1905-30.

2. K. Thompson, "UNIX Time-Sharing System: UNIX Implementation," B.S.T.J.,
57, No.6, Part 2 (July-August 1978), pp. 1931-46.

3. S. C. Johnson and D. M. Ritchie, "UNIX Time-Sharing System: Portability of C
Programs and the UNIX System," B.S.T.J., 57, No.6, Part 2 (July-August 1978),
pp.2021-48.

4. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice Hall, 1978.

5. MCS-86™ User's Manual, Intel Corporation, July 1978.
6. G. Ronkin, "UNIX Time-Sharing System for UNIX 1100 Series Systems," Bell

Laboratories, September 1981.
7. T. F. Arnold and W. N. Toy, "Inside the 3B20 Processor," Bell Lab. Rec., 59 (March

1981), pp. 66-71.
8. M. J. Bach and S. J. Buroff, "The UNIX System: Multiprocessor UNIX Systems,"

AT&T Bell Lab. Tech. J., this issue.
9. H. Lycklama and D. L. Bayer, "UNIX Time-Sharing System: The MERT Operating

System," B.S.T.J., 57, No.6, Part 2 (July-August 1978), pp. 2049-86.

PORTING 1789

10. A. Berenbaum, M. W. Condry, and P. M. Lu, "Operating System and Language
Support Features of the BELLMAC 32," SIGPLAN 17, No.4 (April 1982), pp.
48-56.

AUTHORS
Thomas F. Houghton, B.S. (Electrical Engineering), 1978, University of
Delaware; M.S. (Computer Science), 1981, Northwestern University; AT&T
Bell Laboratories, 1978-. Since joining AT&T Bell Laboratories, Mr. Hough­
ton has worked in several areas of the UNIX operating system. He was part
of a team that ported the UNIX operating system to an Intel 8086-based
processor, worked on UNIX operating system performance characterization,
and is currently working on UNIX operating system file system enhancements.
Mr. Houghton also worked on the design of some UNIX RT operating system
features. Member, Eta Kappa Nu, Tau Beta Pi, ACM, IEEE.

Keith A. Kelleman, B.S. (Electrical Engineering), 1979, Lafayette College;
M.S. (Computer Science), 1981, Stevens Institute of Technology; AT&T Bell
Laboratories, 1979-. At AT&T Sell Laboratories, Mr. Kelleman has been
involved with UNIX system development. He is currently working on the
development of a demand paged kernel for the UNIX system. His previous
assignments were to develop a UNIX system for the AT&T 3B20 computer
and to convert the UNIX system RJE facility to the virtual protocol machine.

George Ronkin, B.A. (Mathematics), 1974, Beloit College; M.S. (Computer
Science), 1976, University of Wisconsin-Madison; AT&T Bell Laboratories,
1977-1984; present affiliation Bell Communications Research, Inc. While at
AT&T Bell Laboratories, Mr. Ronkin worked on mainframe UNIX system
implementation and advanced UNIX system architecture. He is currently a
Member of Technical Staff of the Data and Video Services Research Division,
Bell Communications Research, Inc., with interests in distributed program­
ming environments and file system design for optical storage. Member, ACM.

Edward P. Schan, B.M.E., 1965, University of Louisville; S.M. (Information
Sciences), 1968, University of Chicago; AT&T Bell Laboratories, 1965-. Mr.
Schan is a member ofthe Small Processor Software Development Department.
He has been involved in the architecture and operating system design of the
AT&T 3B5 computer. He has also worked on othermembers of the 3B line of
computers. Member, ACM, IEEE Computer Society.

1790 TECHNICAL JOURNAL, OCTOBER 1984

