
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

The Virtual Protocol Machine

By M. J. FITTON,* C. J. HARKNESS,* K. A. KELLEMAN,*
P. F. LONG,* and C. MEE 111*

(Manuscript received August 12, 1983)

The UNIX"" operating system Virtual Protocol Machine (VPM) is a pack­
age of software tools that allows a wide variety of link-level data communica­
tions protocols to be implemented efficiently in a high-level language. The
resulting protocol implementations are independent of the particular com­
munications hardware, the host machine architecture, and the host operating
system, and therefore can be ported easily from one hardware/software envi­
ronment to another. An extension to VPM, the Common Synchronous Inter­
face (CSI), provides similar benefits for the higher-level protocol software that
runs in the UNIX system host. The implementations of VPM use Program­
mable Communications Devices (PCDs) to off load the link-level communi­
cations processing from the host CPU. A high-level language protocol descrip­
tion is translated by a protocol compiler that runs on the host machine. The
resulting module is then loaded into the PCD and executed. The other
components of VPM are a transparent protocol driver that allows user proc­
esses to interact directly with a link-level protocol implementation, a real­
time trace capability to facilitate debugging, and several utility programs.
VPM has been implemented on several different PCDs and several types of
host computers. VPM-based protocol implementations can be ported with
little or no change from one VPM implementation to another. VPM and CSI
greatly reduce host system overhead while producing maximum communica-

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1859

tions throughput. A number of different higher-level protocols and their link­
level counterparts have been implemented in the UNIX system using CSI and
VPM; among them are X.25, 3270 emulation, a synchronous terminal inter­
face, and a facility for remote job entry to IBM hosts.

I. INTRODUCTION

Data communications protocols have evolved in response to a need
for reliable, efficient, and high -speed communication between host
computers and their terminals and, more recently, between pairs of
host computers.' The functions provided by these protocols include:

1. Framing to determine which bits constitute a character and which
characters make up a message.

2. Error control using cyclic redundancy checks to detect errors and
retransmission to correct them.

3. Flow control to prevent data from piling up at the receiving end
faster than they can be processed.

4. Multiplexing to allow several independent data streams to be
transmitted concurrently over one physical link.

5. Call establishment and clearing procedures to allow use of
switched networks.

Modern communications protocols are organized into layers, or
levels, to manage complexity and provide flexibility of implementation.
Each higher layer uses the facilities provided by the next lower level
and augments them with additional functionality. Levell, the lowest
level, is usually defined in terms of the electrical interfaces at either
end; it provides a basic data transfer facility with no error control or
flow control. Levell is used directly, for example, by simple asynchro­
nous terminals. Level 2, frequently referred to as the link level,
provides reliable transmission across a single physical link; it includes
procedures for error control, flow control, and call establishment and
clearing. An example of a level-2 protocol is IBM's Binary Synchro­
nous Communications procedure, also known as BSC or BISYNC.
Level 3, if used, typically provides multiplexing of independent data
streams. Still higher levels have also been defined.

The use of Programmable Communications Devices (PCDs) is an
effective and economical way to implement link-level protocols.
Lower-level protocol functions typically involve byte or bit operations
allowing the use of inexpensive processors that are matched to these
tasks. Protocol execution can proceed asynchronously using Direct
Memory Access (DMA) methods and interrupts to interact with the
host when necessary. Moving protocol execution to PCDs improves
protocol throughput and allows more effective use of the host com­
puter.

The Virtual Protocol Machine (VPM) is a software package that

1860 TECHNICAL JOURNAL, OCTOBER 1984

provides a set of tools for the writing, executing, and debugging of
link-level protocol programs. These programs, which are referred to
as protocol scripts, are portable across a wide range of PCDs that are
used in conjunction with the various UNIX operating system hosts.

To implement VPM on a PCD, the PCD should have certain
minimal functionality. It should have a means of direct access to the
host's memory and be able to interrupt the host in order to notify it
of completed operations or problems that are detected. It must, of
course, support one or more serial communications lines and have
sufficient random access memory to hold the PCD control program
and at least one protocol script. It is important that the PCD handle
byte operations efficiently. Interrupt-driven communication lines are
not necessary but can be useful with some PCDs.

The VPM software package consists of:
1. A protocol compiler that executes on the UNIX system host and

translates a protocol script into a form suitable for execution on a
particular PCD.

2. PCD control programs that are specific to each supported PCD
that implement the VPM primitives, manage communication with the
host computer, and provide an environment for executing a protocol
script in the PCD.

3. A transparent protocol driver that allows a user process to interact
directly with a level-2 protocol program executing in a PCD; it provides
no protocol features except basic packetization and simple flow con­
trol. [A protocol driver is a character pseudo device driver that uses
the Common Synchronous Interface (CSI)].

4. A trace driver that provides a mechanism for tracing the execu­
tion of a link-level protocol executing in a PCD, as well as a higher­
level protocol executing in the host.

5. A CSI that provides a general interface between level-3 protocols
executing in a UNIX system host and their level-2 counterparts
executing in a PCD; it allows implementations of higher-level protocols
to be portable between the various UNIX system host computers
regardless of the particular PCDs that are used to implement VPM
on those hosts.

6. Miscellaneous utility programs to save and format trace output,
load compiled protocol scripts into PCDs, and connect protocol driver
minor devices with particular communications lines.

Figure 1 shows the relation between the various components of
VPM.

A typical application of VPM and CSI includes a level-3 protocol
implemented as a UNIX system character device driver, communicat­
ing through CSI with a level-2 protocol implemented in a PCD. When
a higher-level protocol is not required or is being implemented at user

VIRTUAL PROTOCOL MACHINE 1861

UNIX SYSTEM HOST

PROGRAMMABLE
COMMUNICATIONS

DEVICE
LINE
UNIT

USER PROTOCOL COMMON

~PROCESS DRIVER SYNCHRONOUS
INTERFACE TRANSLATED ...

PROTOCOL
DESCRIPTION

open
,

PROTOCOL PRIMITIVES
1---7

- ...-r-- ---1 t----close COMMANDS LINE-r- I • INTER-
read VIRTUAL MACHINE FACE ·REPORTS

I - •- •write-r- /

ioctl

T f---7~

Fig. 1-VPM execution environment.

level, the user process can access the level-2 protocol through the
transparent protocol driver.

Applications that have been developed using VPM and CSI include:
(1) remote job entry to IBM systems, (2) support for synchronous
terminals, (3) emulation of IBM 3270 cluster controllers, (4) levels 2
and 3 of the international standard X.25 data communications pro­
tocol, (5) support of asynchronous terminals through the standard
terminal subsystem, and (6) support of the Teletype" 5620 Dot Mapped
Display (DMD) terminal.

VPM and CSI have been implemented on the AT&T 3B20, AT&T
3B5, VAX-ll*, and PDP-ll* computers.

II. THE VIRTUAL MACHINE

The essential component of VPM is a set of communications
primitives embedded in a high-level langauge. C was chosen as the
host language for VPM because of its good bit-manipulation and
control-statement facilities and for its familiarity to the expected user
community.'

The communication primitives were designed with two goals in
mind. The first was to allow each protocol description to be coded in
a manner that is convenient, readable, and makes visible the details
of the protocol. The second goal was to hide the details of the particular
hardware on which VPM is implemented.

There are three sets of primitives corresponding to three different

* Trademark of Digital Equipment Corporation.

1862 TECHNICAL JOURNAL, OCTOBER 1984

classes of protocols. One set supports half-duplex character-oriented
protocols such as IBM's Binary Synchronous Communications (BI­
SYNC) protocol. Another set supports bit-oriented full-duplex proto­
cols such as the international standard High-Level Data Link Control
(HDLC) procedure. A third set of primitives supports full-duplex
asynchronous terminals such as those commonly used as login termi­
nals with the UNIX system. The primitives for bit-oriented protocols
are available only on the DEC* computers; the primitives for asyn­
chronous communication are available only on the 3B5 computer.

The primitives for character-oriented protocols allow the protocol
script to interact with the line interface on a character-by-character
basis. Each incoming character is obtained by the script using an rev
primitive and is examined so that appropriate action can be taken.
Similarly, each outgoing character, including all control characters, is
generated explicitly by the protocol script and passed to the line
interface using a xmt primitive. Reflecting the half-duplex nature of
these protocols, the xmt and rev primitives block if an incoming
character is not immediately available or if the outgoing character
cannot be accepted immediately by the line interface (a few characters
are buffered in hardware or software; the number depends on the
implementation). Other primitives provide for opening and closing
transmit buffers and receive buffers, fetching characters one at a time
from transmit buffers, storing characters one at a time into receive
buffers, and initializing and updating a 16-bit Cyclic Redundancy
Checksum (CRC) calculation. The protocol script is responsible for
determining which incoming and outgoing characters should be incor­
porated into the checksum calculation, if any. Figure 2 shows a
program fragment that transmits a block in transparent BISYNC.

The primitives for communication with asynchronous terminals are
also character-oriented, and in many ways are similar to those just
described. As an aid to performance, some of these primitives manip­
ulate buffers as well as characters. The protocol script normally
operates on a character-by-character basis but has the option of
transmitting blocks of characters as well. These primitives are full­
duplex and nonblocking, and include timer facilities as well as char­
acter-transmission routines. In several cases, the functional definition
of the primitive is similar for synchronous and asynchronous process­
ing, but the details of the implementation are different, so a different
name is used.

The primitives for bit-oriented protocols are nonblocking and allow
the protocol script to interact with the VPM control program on a
complete-frame basis. Incoming and outgoing characters are processed

* Trademark of Digital Equipment Corporation.

VIRTUAL PROTOCOL MACHINE 1863

#define DLE OxlO
#define ETB Ox26
#define PAD Oxff
#define STX Ox02
#define SYNC Ox32

unsigned char crc[2J;
unsigned char byte;
/*
* Transmit a block in transparent BISYNC
*/

xmtblk ()
{

/*
* Initialize CRC calculation and send start-of-block character
*/

crcloc (ere) ;
xsom (SYNC) ;
xmt(DLE) ;
xmt(STX) ;
/*
* Get bytes from the transmit buffer and transmit them
* adding DLE characters as required; update the CRC
* calculation
*/
while (get(byte) == 0) {

if (byte == DLE)
xmt(DLE) ;

xmt (byte) ;
crc16(byte) ;

}
/*
* Transmit end-of-block characters and CRC
*/

xmt (DLE) ;
xmt (ETB) ;
crc16 (ETB) ;
xmt(crc [0));
xmt (ere [lJ) ;
xeom (PAD) ;

Fig. 2-Example use of character-oriented primitives.

by the VPM control program without intervention by the protocol
script. The script polls the control program via a rcvfrm primitive to
determine if a completed receive frame is available. The control
program assumes that up to five characters at the beginning of each
incoming frame are control information that may be processed later
by the protocol script. These characters are stored temporarily and
passed to the protocol script via the rcvfrm primitive. All characters
after the first two are placed into a receive buffer, if one is available;
otherwise the characters are discarded. All characters are included in
the CRC calculation. If an incoming frame is a data frame and the
protocol script accepts it as correct, the script passes it to the host
protocol driver using the rtnr f rm primitive. Other primitives transmit
a control frame or data frame with specified control information in
the first few bytes, determine whether a transmission is currently in
progress, and manage queues of transmit and receive buffers. Figure 3
shows a program fragment that transmits a data frame in the Link
Access Procedure B (LAPB) subset of HDLC.

1864 TECHNICAL JOURNAL, OCTOBER 1984

{if(++X == 8) X = O,}
{Z = X + Y, if(Z >= 8) Z = Z - 8,}
{tstatus = T1FLAG, tl = Tl;}

#define T1FLAG 01
#define INCMOD8(X)
#define ADDMOD8(X,Y,Z)
#define START Tl
/* -

• Transmit a data frame if one is available.
*/

xmtdata () {
/*
* If this is not a retry, get a new frame if available.
*/

if (VS == unopened) {
if (getxfrm(VS))

return (FALSE) ;
INCMOD8(unopened) ,

}
/*
* Set up address and control bytes.
*/

con = (VS&07)«1;
con 1= (VR&07)«5,
ac[l] = con,
ac [0 J faraddr;
/*
* Start Tl timer if not currently running.
*/

if (! (tstatus & T1FLAG))
START_Tl,

}
/*
* Set up control information and transmit frame.
*/

setctl (ac, 2) ;
xmtfrm(VS);
INC110D8(VS) ;
return (TRUE) ,

Fig. 3-Example use of bit-oriented primitives.

Several primitives are available for use with all three classes of
protocols. Among these are facilities for receiving commands from and
sending reports to a UNIX system driver or user process, generating
trace event records, and starting and resetting software timers.

For a detailed description of the VPM primitives, see the entry for
vpmc (1M) in the UNIX System Administrator's Manual."

III. COMMON SYNCHRONOUS INTERFACE

The UNIX operating systems's Common Synchronous Interface
(CSI) is a device-independent interface between a level-3 protocol
executing as a part of the system and a level-2 protocol executing in a
PCD. CSI allows level-3 protocol drivers to be independent of the host
computers on which they run and the PCDs used to implement their
level-2 protocol. Figure 1 illustrates the interaction of the level-3
protocol driver and the level-2 protocol through CSI.

The interface consists of a set of functions used by level 3 and a set
of reports that are generated by level 2. The two classes of functions
are service functions and command functions. Service functions are
used for buffer administration. Command functions are used to set up
and communicate with the level-2 protocol. The level-3 driver receives

VIRTUAL PROTOCOL MACHINE 1865

reports from the level-2 protocol and the PCD device driver via an
interrupt routine. The more important functions and reports are
described below. Some nonessential functions and reports have been
omitted for clarity.

Service functions provide standard buffer queue management for
level-3 protocol drivers. A standard CSI buffer structure is used to
maintain buffers, allowing machine-independent buffering. Each
buffer structure has buffer descriptors associated with it for maintain­
ing buffer addresses, sizes, and any machine-dependent information.
The service functions include:

1. csialloc-Allocate a buffer area for use by the level-3 driver.
This function is typically called once during initialization to allocate
buffer space for use by level 3.

2. csifree-Free the buffer area allocated for level 3.
3. csibget-Get a buffer descriptor and a buffer from the buffer

area. This function is used by the level-3 protocol driver to obtain
data buffers as needed.

4. csibrtn-Return a buffer descriptor and its associated buffer.
This function is used when a buffer will no longer be needed by the
level-3 protocol driver.

5. csicopy-Copy buffers to or from user space. This function
provides a machine-independent way to copy data between system and
user space.

Command functions are used to manage the communications link
and communicate with the level-2 protocol script. The command
functions include:

1. csiattach-Make a logical connection between a protocol driver
and a synchronous line. This function is called before starting the
level-2 protocol.

2. csidetach-Disconnect a protocol driver from a synchronous
line.

3. csistart-Start the level-2 protocol. After a logical connection
has been made, this function is used to start operation of the line (e.g.,
when a user requests a service).

4. csistop-Stop the level-2 protocol. This function is used to halt
operation of the line.

5. csixmtq-Queue a transmit (full) buffer for level 2. This func­
tion is typically used by the level-3 protocol driver to transfer data on
the line.

6. csiemptq-Queue a receive (empty) buffer for level 2. This
function is used to provide level 2 with buffers for incoming data.

7. csiscmd-Senda command to the level-2 protocol. This function
is typically used to communicate control information to level 2.

Reports are passed to a level-S driver routine that is indicated when

1866 TECHNICAL JOURNAL, OCTOBER 1984

the logical connection is established. The level-3 driver receives two
types of reports. Reports received as a result of a function call are
referred to as solicited reports. Reports that are not issued as a result
of a function call are referred to as unsolicited reports. Solicited reports
indicate the disposition of the corresponding function. The solicited
reports include:

1. CISTART-Issued in response to a start command from the
c sistar t routine. The report indicates if the line was started or if
any errors occurred.

:2. cs rsros-c-Issued in response to a stop command from the
csistop routine. The report indicates that the level-2 protocol has
been halted.

3. cs raxaur-i-Issued when the level-2 protocol program returns a
transmit buffer to the level-3 protocol driver. This report typically
indicates that the data have been transmitted.

4. CSIRRBUF-Issued when the level-2 protocol program returns a
receive buffer to the level-3 protocol driver. The report typically
indicates that data have been received.

5. cs rcxnxcx-i-Issued when the level-2 protocol receives a com­
mand from the cs i cmd routine.

Unsolicited reports indicate random events from the level-2 protocol
script. The unsolicited reports include:

1. CSITERM-OCCurs when the protocol terminates abnormally. The
report contains an indication of the reason for termination.

2. CSISRPT-OCCurS when the level-2 protocol passes information
to the protocol driver.

IV. TRACE DRIVER

The trace driver provides a means by which a user program can
receive trace information generated by a VPM protocol driver and
script to aid in debugging. It can also be used to debug other drivers
or operating-system code that is not related to a VPM protocol driver
or script. This driver can be configured to have a number of minor
devices. Each trace-driver minor device provides a means by which a
user program can read data that are generated by functions within the
operating system. These data are recorded by issuing calls to the
trsave function. Each call to trsave generates a unit of data known
as an event record, which consists of a channel number, a count, and
count bytes of data. The channel number can be used to multiplex up
to 16 data streams on each minor device. Each channel can be enabled
or disabled by an ioctl system call.

Event records that are generated for a minor device that is not
currently open, or for a channel that is not currently enabled, are

VIRTUAL PROTOCOL MACHINE 1867

discarded. This allows a user program to control the activation and
deactivation of tracing.

Minor device 0 of the trace driver is used by the VPM transparent
driver and CSI to record a variety of debugging information generated
within these modules and also to record the data generated by trace
primitives in the protocol script. Two commands, vpmsave and
vpmfmt, are available for reading and formatting data passed via the
minor devices of the trace driver. Trace information can be displayed
in real time if appropriate.

v. IMPLEMENTATIONS
5.1 DEC computers

The implementation of VPM on DEC computers (VAX-11, PDP­
11) uses a programmable communications device known as a KMC11­
B. The KMC11-B is a small (12K bytes), fast (200-ns instruction
time), single-board computer that attaches to the UNIBUS* of a VAX*
or PDP* computer. The KMCll-B can become bus master to perform
DMA transfers to and from the host computer's main memory. The
KMC11-B can be fitted with any of several types of communications
interfaces. One type interfaces a single synchronous line at speeds of
up to 56 kb/s, Another type interfaces up to eight synchronous lines
at speeds up to 19.2 kb/s, The actual speed at which the interfaces
can be used depends on the protocol.

Because of the small memory size of the KMC11-B, the VPM
compiler for the DEC computers translates a protocol script into an
intermediate language that is interpreted by a control program in the
KM C11-B. This intermediate language consists of binary instructions
for a hypothetical computer with a simple one-address instruction set.
The VPM primitives are implemented as single instructions for this
virtual machine.

The VPM compiler for the DEC machines does not support the full
C language. While essentially all of the control structures and opera­
tors of C are admitted, there is only one data type: unsigned characters.
All variables are global.

Besides interpreting the compiled protocol script, the VPM control
program is responsible for: (1) communicating with the host computer
(via eight bytes of shared memory) in order to receive commands from

. the host and send reports to the host, (2) servicing the synchronous
line interface(s), (3) monitoring modem status, (4) maintaining a series
of software timers, and (5) maintaining queues of transmit buffers and
receive buffers.

The VPM control program for the eight-line interface uses an

* Trademark of Digital Equipment Corporation.

1868 TECHNICAL JOURNAL, OCTOBER 1984

efficient real-time scheduling algorithm to meet the needs of commu­
nications processing: once the virtual process for a given line gets
control of the processor, that process is allowed to run until it blocks.
A process can block voluntarily by executing a pause primitive. Once
a process blocks, it is not rescheduled until the occurrence of some
event that could change the state of the protocol for that line. Such
events are:

1. Arrival of an incoming character or completion of an outgoing
character for a character-oriented protocol; completion of an incoming
or outgoing frame for a bit-oriented protocol.

2. Notification by the host of the availability of a transmit buffer
or a receive buffer or a command from the host.

3. Expiration of a timer previously started by the process.
As processes become unblocked, they are placed on the end of a

ready-to-run queue and scheduled in a First-In First-Out (FIFO)
manner.

Because of the limited memory space in the KMCll-B, the imple­
mentation for the eight-line interface requires that all eight lines share
a single copy of the compiled protocol script; this implies that all eight
lines must be running the same level-2 protocol. Each line has a 256­
byte data area that is used to hold the local variables for that line and
as a save area on a context switch. Memory protection is provided by
the interpreter.

5.2 AT& T3820 computer

The 3B20 is a 32-bit general-purpose minicomputer manufactured
by AT&T. It supports three different PCDs. One PCD supports
character-oriented protocols using the VPM primitives; the other two
PCDs support X.25 LAPB and are not user-programmable but are
controlled by CSr. The remainder of this section describes the char­
acter-oriented PCD.

The 3B20 implementation of VPM differs from that on the DEC
machines. Protocol programs are not interpreted, but are compiled
into machine language and executed directly. The PCD consists of a
microcomputer system with four RS-232/449 ports. One of the ports
also supports a CCITT V.35 interface for communication at speeds up
to 56K bits per second. The major software components are a full C
language compilation system, a library of VPM primitives, a small
operating system to oversee execution of protocol programs, and a
UNIX system driver to interface to CSr.

A C compiler-based VPM implementation was chosen because C
language support existed for the hardware before the VPM was imple­
mented, and the PCD has ample memory. Supporting the full C

VIRTUAL PROTOCOL MACHINE 1869

language allows protocol programs to be as sophisticated as the appli­
cation requires and real-time constraints permit.

Protocol programs run under the control of a small VPM operating
system. It supports five independent processes: four protocol programs
and one control program. All processes and the operating system
reside in the same address space. The memory and address space not
used by the system is partitioned statically into four pieces, one
partition for each port. There is no hardware memory protection and
processes are expected to be cooperative.

VPM primitives such as rev and xmt are implemented using a
lower-level set of primitives that are defined by the operating system.
The intent was to provide a system that could be extended beyond
VPM if desired. These subprimitives provided facilities for scheduling,
transferring messages to and from the driver, doing DMA to the host
memory, and copying data and accessing peripheral device registers.

Processes are scheduled in a round-robin fashion using a one-tenth
of a second time slice. A process will run until it either gives up the
CPU, or is preempted after running for one-tenth of a second. A
process is always runnable unless it has been stopped or exited. The
pause primitive gives up the CPU until all the other processes have
had a chance to run. Rev is implemented as:

while (receive queue is empty) {
check modem status
pauset):

I
return next character from the queue

Characters are placed into the receive queue by the operating system
through interrupts. The xmt primitive is similar. It puts characters
into a queue, and the characters are actually transmitted at interrupt
level.

The VPM operating system is brought into service by down loading
it through a standard "device on-line" command. After being down
loaded, the control process runs and waits for work to do. The control
process has three functions: (1) down load, stop, and start protocol
programs; (2) respond to audits or "sanity checks" from the driver;
and (3) respond to "set Universal Synchronous/Asynchronous Re­
ceiver/Transmitter (USART) options" commands from the driver.

A protocol program is created in two steps. First, the C source is
compiled and linked with the VPM primitive library, with loader
relocation information left intact. The output of this step is a generic
object program that can be run on any port of any PCD. The next
step is to relocate the program to the memory partition that is

1870 TECHNICAL JOURNAL, OCTOBER 1984

appropriate for the particular port being used, and then down load it
into the PCD.

5.3 AT&T 385 computer

The AT&T 3B5 is also a 32-bit general-purpose minicomputer. It is
somewhat smaller than its predecessor, the 3B20, but it is software
compatible with it. VPM forms the software structure used to support
most data-linking capabilities on the 3B5.

The 3B5 VPM implementation is based on that for the 3B20, with
C programs compiled into machine language and executed directly.Tn
fact, the CSI, trace driver, protocol scripts, transparent driver, and
many utility programs were simply ported from the 3B20 and recom­
piled. Because the PCD hardware is much different, the VPM oper­
ating system was redesigned, but it maintains the same interfaces as
that on the 3B20. Thus, protocols that run on the 3B20 will, in general,
run on the 3B5 with just a recompilation.

The PCD hardware consists of an intelligent peripheral controller,
which runs the scripts, plus a collection of boards containing line
interfaces for the various protocol classes. Several of these boards may
be serviced simultaneously by the controller, with many different
protocols running simultaneously.

The major software components have already been described in
connection with the 3B20. On the 3B5, however, memory availability
is the only limit on the number of processes supported by the VPM
operating system, and a limited degree of protection between protocol
programs exists. Memory allocation is dynamic, done when the scripts
are loaded into the peripheral controller or by request of the running
script via a primitive. Multiple instances of the same protocol may
share the same copy of their program, using separate stacks and data
areas.

The controller operating system and the primitives reside in Eras­
able Programmable Read-Only Memory (EPROM), but much of the
code may be selectively replaced by down loading new versions when
the system is initialized. Scheduling, event handling, and the rest of
the program creation and down-load process are as described for the
3B20. In addition to the standard trace facility, routines exist that
allow a script to output directly to an optional debugging port on the
PCD rather than back to the host.

While VPM was originally intended to support only synchronous
interfaces, on the 3B5 computer it has been extended to include
asynchronous communication as well. This involved, besides providing
the necessary hardware, the addition of the small collection of asyn­
chronous primitives that were outlined in a previous section. These

VIRTUAL PROTOCOL MACHINE 1871

primitives are used to support a standard UNIX system terminal
interface using either RS-232C or Teletype Standard Serial Interface.

VI. APPLICATIONS

VPM has been used by UNIX system developers and customers to
implement a variety of protocols supporting various networking ap­
plications. Some of the more widely used protocols and applications
have been developed for official UNIX system distribution; these are
briefly described below. Many other protocols and applications have
been developed by our customers; some of these are listed in the
miscellaneous section below.

6.1 Remote job entry

The Remote Job Entry (RJE) system connects UNIX systems to
IBM 360/370 computers by simulating a remote work station. The
basic facility provided by RJE is the remote execution of jobs created
on the UNIX system.

The IBM and UNIX systems communicate using a character­
oriented protocol known as Houston Automatic Spooling Priority
(HASP) multileaving. Three processes are used to implement the
multileaving protocol: a PCD program and two user processes. The
protocol program implements level 2. It performs header consistency
and CRC-16 checks on received blocks, and it generates the CRC-16
data for transmitted blocks. It also performs Extended Binary-Coded
Decimal Interchange Code (EBCDIC) to American National Standard
Code Information Interchange (ASCII) translation on print data. The
two user processes multiplex and demultiplex multiple job streams to
and from a single data link.

6.2 Synchronous terminals

Two applications of VPM support IBM 3277-compatible display
station (terminal) clusters. The Synchronous Terminal (ST) system
allows terminal clusters to be connected to a UNIX system host, while
the 3270 Emulation (EM) system allows applications to connect to
hosts that support terminal clusters. Both of these packages have been
implemented using VPM CSI.

Synchronous terminals communicate with the host through a single
cluster controller using the BISYNC line protocol. Message traffic is
regulated by using a polling and selecting scheme. The host polls the
cluster for available input data and selects specific terminals for
output.

The ST system software consists of a level-2 protocol script and a
level-3 driver. The script implements the polling and selecting func­
tions of the line protocol. The driver provides two different user

1872 TECHNICAL JOURNAL, OCTOBER 1984

interfaces: (1) In application mode, the controlling user process com­
pletely manages the display terminal screen. (2) In line mode, the
driver provides enough basic screen management to make the device
usable as a login terminal for most of the standard UNIX system
commands.

The EM system software consists of a level-2 protocol script and a
level-3 driver interface. The script implements the BISYNC line
protocol of a display station controller. The driver interface is in two
parts: a controller interface driver that handles link administration
and controller functions, and a terminal interface driver that supplies
the user-level interface.

6.3 X.25 interface

X.25 is an international standard layered data communications
protocol that allows several virtual channels to be multiplexed over a
single physical link. Each channel has its own flow control and error
control.

The current version of X.25 in the UNIX system consists of three
levels. On DEC computers, level 2 is implemented as a VPM protocol
script. On AT&T computers, level 2 is implemented on PCDs that do
not support VPM. Level 3 of X.25 is implemented using CSI, which
makes it portable across all UNIX system hosts that support CSI.

6.4 5620 DMD support

The Teletype 5620 Dot Mapped Display (DMD) terminal is an
intelligent peripheral containing a keyboard and display, an electronic
"mouse" for cursor pointing, and an RS-232 output port for a dot
matrix printer. The driver that supports it utilizes VPM. Through
application code, options in the VPM-based driver, and software
running on the DMD, multiple windows are supported on the terminal
display.

This driver is based on the asynchronous terminal package with the
addition of multiple communications channels and knowledge of the
communications protocol used by the code running on the DMD. This
involves dynamically replacing the line discipline used in standard
terminal mode with one that multiplexes and demultiplexes packets
intended for a virtual terminal, and it ensures that all packets are
properly ordered. Flow control is provided to ensure that packets are
not sent more quickly than they can be received.

6.5 Miscellaneous

Some customer-developed applications of VPM include:
• LEAP-A package similar to the 3270 emulation package that is

used to load-test IBM host applications that use 3270-compatible
terminals.

VIRTUAL PROTOCOL MACHINE 1873

• Bell Administrative Network Communications Systems (BANCS)­
A message-switching network for business communications. The
internal protocols are based on BISYNC. A UNIX system interface
to control the BANCS switches has been developed using VPM.

• BLN-An AT&T Bell Laboratories Network that connects hosts
from different vendors typically running different operating systems.
An interface to BLN for UNIX system hosts was developed using
VPM.

• WANG-A protocol script was developed to allow UNIX systems
to interface to a WANG word processer.

VII. CONCLUSION

VPM was developed in response to a need to implement several
different character-oriented protocols on DEC's KMCll-B micro­
processor. We did not have the resources or the inclination to develop
and support assembly-language implementations of these protocols
plus an unpredictable number of future requirements. We therefore
were led to develop a general-purpose package for implementing level­
2 protocols rather than several different assembly-language implemen­
tations of specific protocols.

As this effort unfolded, new requirements led us to expand VPM to
include bit-stuffing protocols as well. When the UNIX system was
ported to new computers with different PCDs, VPM became the means
of porting level-2 protocol implementations to the different PCDs
involved. Since VPM allowed the representation of a level-2 protocol
to be hardware independent, it could be ported to other environments
with little or no change. In a few cases, protocol implementations that
were developed using VPM have been ported to environments unre­
lated to the UNIX system.

As VPM was extended to new UNIX system hosts, and higher-level
protocols such as X.25 were implemented as UNIX system drivers, it
became necessary to provide a means that would ensure the portability
of these drivers. This led to the definition ofthe Common Synchronous
Interface (CSI), which provides a device-independent interface be­
tween level-2 and level-3 protocols.

The clear success of VPM as a UNIX system facility is gratifying
to all of us who had a part in developing it. The goal of opening up
data communications programming to applications programmers has
been met; customers really are writing their own communications
applications. The ability to program link-level protocols in a high­
level language has been valuable in debugging implementations of
complex protocols such as X.25. The ability to port protocol imple-

1874 TECHNICAL JOURNAL, OCTOBER 1984

mentations between computers, although not considered in the original
goals, has become perhaps the most important feature.

VIII. ACKNOWLEDGMENTS

In addition to the authors of this article, a large number of people
have contributed directly or indirectly to the development of VPM;
among them are R. V. Baron, C. A. Bishop, R. J. Butera, T. A. Dolotta,
J. A. Dziadosz, R. M. Ermann, R. C. Haight, C. B. Hergenhan, D. E.
Jimenez-Puttress, G. W. R. Luderer, G. J. McGrath, B. Nohejl, V. H.
Rosenthal, R. M. Sabrio, A. L. Sabsevitz, L. J. Schroeder, D. R.
Shuman, B. A. Tague, B. E. Todd, and L. A. Wehr.

Finally, the utility of the UNIX system architecture, philosophy,
and tools as a basis for the development ofVPM is gratefully acknowl­
edged.

REFERENCES

1. D. W. Davies, D. L. A. Barber, W. L. Price, and C. M. Solomonides, Computer
Networks and Their Protocols,New York: Wiley, 1979.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, NJ: Prentice-Hall, 1978.

3. UNIX System Administrator's Manual-Release 5.0, Western Electric, June 1982.

AUTHORS
Michael J. Fitton, B.S. (Computer Science), 1981, Rutgers University; M.S.
(Computer Science), 1983, Stevens Institute of Technology; AT&T Bell Lab­
oratories, 1977-. Mr. Fitton has been involved in software development for
the UNIX operating system. His initial work involved the design and imple­
mentation of tools for the Programmer's Workbench version of the UNIX
system. He has also worked on data communications software and operating
system development. He is currently working on the development of a multi­
processor version of the UNIX operating system.

Carol J. Harkness, B.A. (Mathematics), 1969, University of Wisconsin;
M.S. (Computer Science), 1970, Purdue University; AT&T Bell Laboratories,
1969-. Ms. Harkness has designed editors, compilers, assemblers, and test
tools for a variety of ESS'· projects. She became involved with microprocessors
through debugging tool development, then went on to developing peripheral
software and firmware for the AT&T 3B5 computer. She is currently the
Supervisor of the Network Design group, developing the AT&T 3B Net local
area network for the 3B computer line. Member, ACM, IEEE, Phi Beta
Kappa, Phi Kappa Phi, Sigma Epsilon Sigma.

Keith A. Kelleman, B.S. (Electrical Engineering), 1979, Lafayette College;
M.S. (Computer Science), 1981, Stevens Institute of Technology; AT&T Bell
Laboratories, 1979-. At AT&T Bell Laboratories, Mr. Kelleman has been
involved with UNIX operating system development. He is currently working
on the development of a demand paged kernel for the UNIX system. His

VIRTUAL PROTOCOL MACHINE 1875

previous assignments were to develop a UNIX system for the AT&T 3B20
computer and to convert the RJE system to VPM.

Paul F. Long, B.S. (Engineering Mathematics), 1960, M.S. (Applied Math­
ematics), 1963, North Carolina State University; Bellcomm, Inc., 1965-1972;
AT&T Bell Laboratories, 1972-. Mr. Long has worked on various applications
and systems programming projects and supervised similar activities over the
last 18 years. In addition to working on VPM, he participated in the UNIX
operating system BX.25 implementation as well as other UNIX system
networking projects. Member, Tau Beta Pi, Pi Mu Epsilon, Sigma Xi.

Carl Mee III, B.S. (Mathematics), 1957, The University of the South; M.A.
(Mathematics), 1964, The University of Virginia; U.S. Air Force, 1958-1962;
Bellcomm, Inc., 1964-1966, 1968-1972; Informatics, Inc., 1966-1968; AT&T
Bell Laboratories, 1972-. Mr. Mee has worked on a variety of applications
and systems programming projects. From 1978 to 1983 he worked on the
development of communications facilities and other software for the UNIX
operating system. He is currently working on the development of video-based
interactive information systems.

1876 TECHNICAL JOURNAL, OCTOBER 1984

