AT&T Bell Laboratories Technical Journal
Vol. 63, No. 8, October, 1984
Printed in U.S.A.

The UNIX System:

A Network of Computers Running the UNIX
System

By T. E. FRITZ,* J. E. HEFNER,* and T. M. RALEIGH!
(Manuscript received September 1, 1983)

This paper discusses experience in designing software to interconnect large
numbers of processors that are based on the UNIX™ operating system over a
high-speed local area network. The paper discusses portability of the imple-
mentation between different processors and operating systems based on the
UNIX system, the influence of different schedulers, input/output subsystems,
and different speed processors on the implementation and performance of the
network. Also discussed are characteristics of network usage, such as traffic
patterns, throughput, and response.

I. INTRODUCTION

This paper documents experience in designing software to intercon-
nect large numbers of UNIX operating systems at AT&T Bell Labo-
ratories over a high-speed local area network. The networks are used
to support large cooperative development environments and general-
purpose computer centers.

1. BACKGROUND
By 1979, the needs of many development projects and computing

* AT&T Bell Laboratories. T AT&T Bell Laboratories; present affiliation
Bell Communications Research, Inc.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1877

center environments at AT&T Bell Laboratories had outgrown the
confines of a single minicomputer or mainframe. The programming
environment provided by the UNIX system had become the preferred
development environment on both small and large software develop-
ment projects. The preference for a UNIX system environment was
so strong that many development functions were migrated from tra-
ditional mainframes to minicomputers running the UNIX system. As
the size and complexity of each project increased, additional minicom-
puters were added to balance the load among users, thereby creating
a need for communication between systems. For several years, the
dial-up network provided by uucp!® satisfied the communication needs
of many widely separated small development environments; but for
large cooperative development environments, the network was over-
loaded and the need for higher-speed localized access between proces-
sors was apparent. During the same period, implementations of the
UNIX system on other processors (IBM 370, AT&T 3B20S, and
UNIVAC*) were in progress and it was clear that users wanted to view
processors as different-speed functional engines (minicomputer versus
mainframe), all with a standard UNIX operating environment and
with a common high-speed interconnect. During 1979, a standard
UNIX system interface was far from realized since many of the UNIX
system implementations were in their infancy and the lessons about
portability of software were being uncovered painfully.

Research and development of network software for UNIX systems
have been emphasized since the UNIX system was first introduced in
1973. The uucp network is familiar to all UNIX system installations
and many implementations of small networks using X.25, DDCMP,!
time-division multiplexors, and other media have been developed to
provide limited batch file transfer capabilities. In parallel with this,
much research has gone into interactive networks? of UNIX systems.
Most of this work was characterized as follows:

1. All processors were identical (single vendor).

2. There was no standard UNIX system environment. The environ-
ment (operating system and C compiler) at each site was under the
control of local researchers and developers and was frequently custom
tailored.

3. Because of the availabilty and investment in 16-bit minicompu-
ters, the network software was constrained to run in a limited address
space (in particular, the address space of a PDP-11/70,' 64K bytes of
text, and 64K bytes of data). This limitation existed for both the user-

* Trademark of Sperry Corporation.
*Trademark of Digital Equipment Corporation.

1878 TECHNICAL JOURNAL, OCTOBER 1984

level network control programs and within the operating system. It
placed constraints on the size and function of network support func-
tions for the operating system. Keeping the implementation small and
isolated from the kernel of the system was a goal of many of the
implementations.

The availability of local area networking devices and the emergence
of 32-bit minicomputers by 1980 offered the potential for creating a
distributed computing environment for the UNIX system. It also
provided the impetus for standardizing the operating system inter-
faces, commands, and compilers. A transition to a multiple-vendor
computing environment was feasible because a standard package of
software reduced .the cost of developing and maintaining a standard
environment on each vendor’s hardware. The development of the
UNIX system local area network using the HYPERchannel* network
is instructive because not only did the ordinary portability issues of
user-level application software (word length, byte-order dependencies,
etc.) have to be addressed, but several operating systems that resem-
bled the UNIX system were hosts on the network; differences between
these implementations affected other aspects of portability.

lIl. A HIGH-SPEED LOCAL AREA NETWORK

Development of the 5ESS™ switching system® had created the need
for many cooperating minicomputers (3B20S, VAX,' and PDP-11/70
computers) and mainframes (IBM 370) to manage a large software
development environment. This project provided the impetus for the
development of both the HYPERchannel network and the UNIX
system implementation for the IBM 370 processor. The selection of
the HYPERchannel network as the interconnect medium was based
on the large number of interfaces to processors that existed (IBM,
DEC,' Data General, etc.) and the success of some prototyping work
done at the Indian Hill computer center for the AT&T Bell Labora-
tories network. Ethernet,* Datakit™ virtual circuit switch, X.25, and
broadband networks were not commercially available for a wide variety
of processors. Constructing the software and shaking out the initial
skeleton of the network spanned two and one-half years and involved
many developers from several AT&T Bell Laboratories locations.

The HYPERchannel network was developed to serve a community
in which:

1. The network had to support a range of UNIX system versions
and C compilers.

* Trademark of Network Systems Corporation.
T Trademark of Digital Equipment Corporation.
¥ Trademark of Xerox Corporation.

PROCESSOR NETWORK 1879

2. The network was required to run on 16- and 32-bit processors
with different byte orderings, word lengths, and processing power.

3. The implementation was required to run on other similar oper-
ating systems. The input/output (I/O) subsystems for each vendor’s
processor had a different architecture and the control sequence for
communicating with each network adapter was different. This meant
that a major part of the development was designing and synchronizing
device drivers and establishing the proper error recovery on each
Processor.

4. The reliability of the network had to remain high in spite of the
fact that processors would randomly join and leave the network
(deliberately or unexpectedly).

Because of the number of different environments that were involved,
several design constraints were enforced on the software. In particular,

1. Since all processors would run in a user environment similar to
the UNIX system, a goal was set to produce a single user-level network
software package that would run on all implementations. All machine
dependencies could not be excluded from the user-level source so
conditional compilation of a few user modules was the only vehicle
allowed to account for machine dependencies, and its use was discour-
aged.

2. The network software and drivers were written in a subset of the
C language. Recent additions to the C language such as enumeration
data types and block structure were not allowed because the compilers
on each different processor had not reached the same level of maturity.

3. New operating system features were excluded from the design.
Interprocess communication features (e.g., shared memory, messages,
semaphores) could not be taken advantage of since they were not yet
implemented on some UNIX systems (e.g., the first version of the
UNIX system for IBM System/370) or the implementation was not
portable. For example, the architecture of the memory management
hardware on PDP-11/70 and VAX-11/780* processors dictated a rad-
ically different interface and implementation for shared memory.

In spite of the differences in compilers and byte orders of processors,
the software contains only a few conditional compilation statements
that are processor dependent.

3.1 Operating system environment

The UNIX system environment that existed on the network was
not uniform. Versions 3.0, 4.2, and 5.0 of the UNIX system (two of
these systems are sold commercially as UNIX Systems III and V), or
emulations of these systems, were all present on the network. Devel-

* Trademark of Digital Equipment Corporation.

1880 TECHNICAL JOURNAL, OCTOBER 1984

opment projects usually require that a gradual transition from one
version of a system to another exists so that old versions of the
operating system lingered on some processors for long periods of time.
The following operating system implementations or emulations were
part of the network.

3.1.1 The UNIX operating system

The initial prototype network software was done for the PDP-11/
70 computers running UNIX System III. Since native-mode UNIX
system implementations* are similar, porting the network software
and drivers to the VAX-11/780 computer was straightforward, but
making the implementation work on the VAX-11/780 consumed
months of effort because of hardware interface problems. When the
UNIX system implementation for the 3B20S computer was available,
it was added to the network. This processor has a specialized 1/0
subsystem and required the design of a new device interface and a
structurally different device driver. This development extended over a
one-year period.

3.1.2 The UNIX system implementation for System|370

An implementation of the UNIX system on IBM 870 processors*
became an integral part of many of the networks. This UNIX system
implementation uses the IBM TSS operating system for the basic
kernel, paging, and device management. The UNIX system implemen-
tation runs on top of the TSS operating system as a single supervisor
managing all user processes as subtasks. Because of the structure of
the implementation, the relationship of an ordinary user process to
the kernel and device drivers is different from native-mode UNIX
system implementations; designing the device driver required the
creation of a special pseudo device driver that split responsibilities for
managing the interface between TSS and the UNIX system supervisor.

3.1.3 The UNIX RT operating system

The UNIX Real-Time (RT) operating system is a message-based
implementation of the UNIX system that runs only on PDP-11/70
computers and is of interest for historical reasons and because it is
such a radically different emulation of the UNIX system interface.’
The operating system is partitioned into modules that communicate
by means of messages and all device drivers are processes in the

* The term “native-mode UNIX system implementation” refers to implementations
resulting from porting the UNIX system source to a processor. This is in contrast to an
implementation that emulates the UNIX system interface on top of a different operating
system (e.g., the UNIX system for System/370).

PROCESSOR NETWORK 1881

system. The I/0 subsystem, file system, and basic processor scheduling
were also radically different on this system. Since the UNIX RT
system software runs only on PDP-11/70 processors, the hardware
interface part of the driver was similar to the UNIX system driver;
however, the message protocol that interfaces the driver to the kernel
and the semaphores that synchronize the driver required a radically
different design of the network control part of the driver. The Duplex
Multiple Environment Real Time (DMERT) operating system® is a
high-reliability derivation of the UNIX RT operating system software
and plans are under way to interface the AT&T 3B20D duplex pro-
cessor to the network.

Figure 1 is a representation of the process structure of each of the
operating systems that are on the network. User-level processes are
shown in circles by the letter “u” with their relationship to the major
modules of the operating system.

3.1.4 Schedulers

Even though the UNIX system implementations are similar, the
basic scheduling of the CPU was different on each system, and the
following dependencies were found.

1. The UNIX system attempts to share the processor among all
processes on the system.” Since the network supports multiple con-
versations, the more conversations that exist in parallel, the greater
the percentage of the CPU devoted to networking. Most customers
view networking as an adjunct to their system and would prefer to

H N
> :
4 500
© e

UNIX
SYSTEM
SUPERVISOR

N

OPERATING
SYSTEM

@ (b) ©
D NETWORK ADAPTER [5Z] DEVICE INTERFACE SOFTWARE @USER PROCESS

Fig. 1—UNIX operating system implementations for (a) the standard UNIX system,
(b) the UNIX system for IBM System/370, and (c) the UNIX RT operating system.

1882 TECHNICAL JOURNAL, OCTOBER 1984

limit networking (and other functions) to a fixed fraction of the CPU.
This would require a fair share scheduler based on shares allocated to
users rather than processes.

2. The UNIX system for System/370 relies on TSS to schedule jobs
and handle interrupts. The T'SS scheduler was tuned to run a time-
sharing load; however, the tools for manipulating the priority of jobs
are crude.

3. The UNIX RT system software gives a high priority to I/O-
bound jobs. Initially, this gave the network software higher priority
than desired and scheduler changes were made to prevent the network
from hogging the processor on several of the heavily used UNIX RT
systems.

On all systems, the network runs at a slightly higher priority than
that of average users to reduce the amount of time that packets linger
in adapters.

3.1.5 1/O subsystems

The I/O subsystems for the different processors and operating
systems are different. The device driver software for different operat-
ing system implementations is similar but is not portable. The devel-
opment and maintenance of different device drivers was the single
most time-consuming aspect of the project.

IV. NETWORK ARCHITECTURE

The network consists of the HYPERchannel hardware that forms
the physical connection between host processors and the host-resident
software that implements a batch file transfer service. An overview of
these two segments follows.

4.1 Network hardware architecture

The HYPERchannel network is a Carrier Sense Multiple Access
(CSMA) network used to interconnect a variety of processors. A good
description of the system can be found in Ref. 8. The following sections
summarize the major components of the system from a conceptual
point of view.

4.1.1 Cable

Coaxial cable connects adapters in this network. The cable is not
continuous and up to four parallel cables (trunks) can connect adapt-
ers. The cable is daisy-chained between adapters as in Fig. 2a. The
cables linking adapters together are referred to as trunks. Each trunk
is a totally separate communication pathway, so Fig. 2b is a better
representation of the interconnection. (Data cannot jump between
trunks unless a processor on the network reads the data from the

PROCESSOR NETWORK 1883

(b)

Fig. 2—(a) Daisy-chaining of adapters. (b) Conceptual interconnection of adapters.

adapter on one trunk and retransmits it on another trunk.) The trunk
usage is managed solely by the adapters and is of no concern to the
user.

4.1.2 Adapters

The adapters connect processors to the network and execute trans-
fers between adapters. The design of all adapter models is fundamen-
tally the same; each model has different microcode, depending on the
type of processor connected to it. Figure 3 illustrates that a minicom-
puter adapter can have four different processors attached to the same
adapter, while only one processor may be connected to a mainframe

AT&T 3B20S
MINICOMPUTER

A VAX
MINICOMPUTER

A 3B20A A PDP-11/70
MINICOMPUTER MINICOMPUTER

IBM VAX 3B20S
370 MINICOMPUTER MINICOMPUTER

ADAPTER O MINICOMPUTER

Fig. 3—Simple HYPERchannel local area network.

1884 TECHNICAL JOURNAL, OCTOBER 1984

adapter. Figure 4 is a simplification of the internal structure of an
adapter. Each adapter contains

1. A 4K-byte data buffer

2. A small buffer area for messages

3. A high-speed microprocessor

4. Circuits for transmitting and receiving data on trunks

5. Circuits for transmitting data to the processor.

4.1.2.1 Processor to processor transfers. A transfer is outlined below.

1. Requests to transmit data across the network are generated by a
user and queued (see Fig. 5).

2. A request for service is initiated by processor 1 (Fig. 5, line a).
To do this, processor 1 must first get the attention of its own adapter
(Fig. 5, line b). This is a significant point because the adapter has only
one data buffer. The adapter is a half-duplex device; that is, while the
buffer is being used to transmit data, the adapter is busy and cannot
receive data. Similarly, the adapter cannot transmit data if a data
packet has arrived. This half-duplex nature of the microcode in the
adapter gives an implied preference for received data and makes the
device software for the adapter complicated.

3. Once the adapter has accepted the request to transfer from
processor 1, it executes a reservation protocol to reserve the remote
adapter and transmits the data (Fig. 5, line c).

4. At the remote adapter, an interrupt is generated to notify pro-
cessor 2 that data have arrived (Fig. 5, line d). Processor 2 then
unloads the adapter (by means of direct-memory access) and stores
the received data. (An important parameter here is how long it takes
processor 2 to schedule a user job to unload the adapter. The network
software runs at a high priority but since the UNIX system is a time-

MESSAGE °
BUFFERS
TRUNK
0
DATA
BUFFER
PROCESSOR TRUNK
INTERFACE
TRUNK
2
MICROPROCESSOR TRgNK

Fig. 4—HYPERchannel adapter.

"PROCESSOR NETWORK 1885

Q PROCESSOR D ADAPTER j USER PROCESS

Fig. 5—Processor-to-processor transfers.

sharing system, the data could remain in the adapter for several
seconds or minutes on a heavily loaded system. The length of time
data sit in an adapter is important because no other data can be
transmitted or received on that adapter until the data are unloaded.)

4.1.2.2 Link adapters. Link adapters are a pair of adapters that allow
two local area networks to be joined together and appear as one. Figure
6 shows link adapters connecting two networks. One link adapter is
placed on each network. Several different types of transmission media
are available for carrying data between the link adapters. Fiber optic
lines and 56-kb private lines have been used successfully at various
AT&T locations.

The following should be noted:

1. When link adapters are used, the network appears as one large
network.

2. The link adapters operate as half-duplex devices since there is
only one buffer in each adapter. Low-speed transmission lines produce
major bottlenecks within the network; therefore, high-speed media
(fiber optics, T'1, or microwave) should be used.

4.2 Networking software architecture

The networking software is divided into three distinct layers:

1. A service layer that consists of user-level commands (nusend) to
initiate the file transfer process; in addition, it contains commands
(nscstat, nscloop), which query the state of the network.

1886 TECHNICAL JOURNAL, OCTOBER 1984

NETWORK A

NETWORK B

Fig. 6—Interconnection of local area networks using link adapters.

2. A session layer that provides agreements between processors for
file transfer and remote execution (nscd, nsclisten, nscrecv).

3. A link layer that provides for reliable transmission of data
between systems (nscsend, nscread).

Each of these layers, as well as the interactions between layers, is
discussed in the following sections. The structure of the architecture
as well as the communication between layers is illustrated in Fig. 7.

4.2.1 Service layer

The user initiates a file transfer with the nusend command; this
command queues the request by creating a Job Control Language
(JCL) file on disk, which contains all information necessary to deliver
the requested files to the destination system. The nusend command

nusend SERVICE SERVICE
nscloop LAYER LAYER
nscstat
nscd SESSION SESSION
nscrecv LAYER LAYER
nsclisten
nscread LINK LINK
nscsend LAYER LAYER
NSC

RE HARDWARE
ADAPTERS HARDWA

I e o

Fig. 7—Network processes and the protocol layers they implement.

PROCESSOR NETWORK

1887

informs the session layer that new work has arrived by attempting to
execute the file transfer daemon nscd.

4.2.2 Session layer

The session layer packetizes user data files and arranges for their
transfer over the network. This file transfer protocol is implemented
using three processes:

1. nscd—the file transfer daemon

2. nsclisten—a listener process that waits for incoming requests

3. nscrecv—the file receive daemon.

The session layer communicates with the link layer through UNIX
system pipes and signals. It receives work from the service layer by
reading the JCL files created by nusend and sending mail to the user
on completion.

4.2.2.1 Nscd. Nscd reads the JCL files created by nusend to deter-
mine what work is to be performed. It is responsible for:

1. Establishing a connection to the destination system specified in
the JCL file

2. Sending and receiving session layer control packets that control
the file transfer

3. Reading user data files from disk and forming packets to be sent
over the network (by means of the link layer).

Nsecd initiates a conversation by issuing a connection request to the
nsclisten process on the remote machine. This results in a nscrecv
daemon process being spawned on the destination machine to handle
the actual file transfer.

4.2.2.2 Nsclisten. The listen process, nsclisten, accepts calls from
remote nscd processes and spawns the file transfer receive daemon,
nscrecv, to receive the file from the remote.

The listener process is used to implement an “active” network; that
is, each nsclisten process sends I am alive messages to its peer
nsclisten process on each host on the network at a low frequency.

4.2.2.3 Nscrecv. Nscrecv is the file transfer receiving daemon. It is
responsible for:

1. Completing the connection request that was initiated by the file
transfer daemon (nscd)

2. Implementing the file transfer protocol in cooperation with the
sending process on the remote host

3. Receiving the user data files, delivering them to the user, and
acknowledging their reception.

4.2.3 Link layer
The link layer performs the synchronization of host-to-host com-

1888 TECHNICAL JOURNAL, OCTOBER 1984

munications and provides flow control on a per packet basis. The layer
consists of two processes:

1. nscsend—reads data from the session layer and arranges for its
transmission over the network

2. nscread—reads data from the network and passes data to the
session layer.

This two-process structure is used to simulate asynchronous I/0, a
feature that is not currently available under the UNIX system.

V. USER INTERFACE TO THE NETWORK

The nusend command provides the user interface to the network
for both file transfer and remote command execution. The syntax is a
carryover of a syntax originally developed to simulate file transfer
between UNIX systems by means of the Remote Job Entry subsystem.

5.1 File transfer

The nusend command enables the user to transfer a file across the
network. For example, the command

nusend -d mhtsa file

sends file to system mhtsa.

This command places the file in a default directory on the desti-
nation system. Options to the command allow the specification of a
fully qualified path name for the destination file or delivery to a
different user on the remote system.

Many users of the network are never aware of the network software.
Rather, they invoke standard utilities that have been modified to
invoke the network software. For example, the standard means for
spooling a job to the line printer

pr file | 1p

may actually use the network if the local administrator has replaced
the standard line printer spooler (LP) with a command to transfer
files to a printer on a remote system. On many systems the mail
command has been modified to forward mail to other systems on the
network rather than through the slower uucp mechanism.

5.2 Remote command execution

The nusend command also provides the user with a mechanism for
remote batch command execution. Any command, either a standard
UNIX system command or a user’s own program, can be executed
using this facility; any output from the executed command may be

PROCESSOR NETWORK 1889

placed optionally in a file on the remote system or returned to the
user’s local system.

VI. USAGE

The oldest and largest of the networks (see Fig. 8) has been in full
production for approximately three years. The uses of the network at
this point fall into the following broad categories:

1. Functional units—With the variety of processors and operating
system implementations available on the network, specialization of
systems among some projects has occurred. Implementations of the
UNIX system running on IBM 3033AP and 3081K configurations are
much faster than minicomputers, and because of their speed and large
address space they have been used for such tasks as load building and
source management. Other processors have been dedicated for lab
support, source development, and testing (see Fig. 9).

2. Off-loading—This most often takes the form of spooling output
to systems that have extensive print facilities. However, some experi-
ments have been made in off-loading heavy CPU-bound and I/0O-
bound jobs, such as text processing, onto back-end machines.

3. Messaging—The UNIX system mail facility uses uucp to send
mail to other systems. Some sites have modified uucp and mail to use
the local area network for local deliveries, and use the dial-up network
to mail to remote systems.

4. System administration—Several computer centers have imple-
mented network-wide password file administration, software distri-
bution, accounting, maintenance, and general processor status moni-
toring by using the network. Even though the interface to the network
is batch oriented, the high speed and low queuing times for jobs allows
a single system administrator on one system to monitor many proces-
sors in one or more computer centers.

5. Site interconnection—Use of link adapters allows processors in
different buildings to be connected by means of fiber optics, microwave
or private lines, thereby extending the domain of the local area
network.

6.1 Throughput

Due to the differences in speed of the processors on the network,
the throughput of network transfers varies considerably. Although the
raw speed of the HYPERchannel is 50 Mb/s, a file transfer consists
of more than the raw exchange of data. The CPU speed, I/O transfer
rate, and disk speed of the systems involved dominates the file transfer
rate; the use of UNIX system pipes and multiple processes to establish
a conversation also limits the maximum bandwidth of transfers. Net-
work traffic, general user load on the connecting systems involved in

1890 TECHNICAL JOURNAL, OCTOBER 1984

O JHOMIL3N

*{I0M)8U BaIE [BI0] [BNJOR UY—§ ‘31

(1174

EERIE]

AN
y3aid

"31dvav NI 9
("013 ‘180€ ‘€€0E ‘OLE WHI) D
H3ILNJINOD INVHIANIVIN
43ildvav
H3LNJINODINIIN e
(43LNdWOD 0£/1L1-dad
HO "LL-XVA 'S0Z8E 131V} D H31dvav @
H3LNJdWOIINIW JNVHANIVA

JANIT g MHOML3N

@ @ @ ©

@ @ @ ©

YV AdOMLIN
oLL

@ @ @ @ @ @
0 0000000 Q000U

1891

PROCESSOR NETWORK

SOURCE DEVELOPERS

LOAD TESTERS
FAST LOAD BUILDER

MAINFRAME
[__—I ADAPTER O MINICOMPUTER Q COMPUTER

Fig. 9—Functional units in a development lab.

the file transfer, and contention at the adapter interfaces between
minicomputers also place constraints on the transfer rate.

On lightly loaded systems, transfer speeds range from 20K bytes/s
between 16-bit minicomputers up to 200K bytes/s for transfers be-
tween large mainframes. Average transfer rates are usually lower since
many of the files transferred over the network are small (less than
10K bytes) and setup time for each job dominates the transfer. In
general, files are queued for only a short period of time so user
satisfaction is high. Most files (less than 100K bytes) are usually
queued and transmitted in a shorter time frame than the user can log
onto the remote system. Table I summarizes file transfer rates between
the different computer types currently supported on the network.

Table —Nusend performance on lightly loaded UNIX systems

Destination Host Computer

Sending Host AT&T VAX- PDP- 1IBM IBM
Computer 3B20S 11/780 11/70 3033 3081K
AT&T 3B20S 60* 50 40 70 () 75
VAX-11/780 50 50 40 60 70
PDP-11/70 40 40 20 40 40
IBM 3033 75 60 50 120 150
IBM 3081K 80 70 50 150 200"

* All rates are in K bytes/s
t Projected rate

1892 TECHNICAL JOURNAL, OCTOBER 1984

6.2 Network reliability

In the initial stages of development, the reliability of the network
was marginal because of both hardware and software problems. When
a new type of processor (e.g., the IBM 370) joined the network, new
problems were uncovered between processors that run at different
speeds and with different byte ordering. For the past three years all
the networks have been in production use with high availability.

VII. LESSONS

From the process of developing the network software packages and
the usage patterns of the community of users that the networks serve,
several lessons were learned.

7.1 Portability

Using a common language (in this case C language) and a common
UNIX system environment on all processors reduced both the amount
of development staff needed and the debugging effort. The fact that
not all systems ran the latest version of UNIX software had little
impact on the software since the versions of the UNIX system were
upward-compatible. However, developers had to make a conscious
effort to write in a subset of C to assure that new modules would be
portable. In porting a network implementation to several radically
different UNIX system implementations, it was realized that some
applications such as networking uncover hidden assumptions about
what constitutes a standard UNIX system environment. The structure
of processes and their relationships to the system, each other, and
devices influence the portability of the system. The flow of data from
user processes through the system and the way that the operating
system treats processes with these characteristics can infuence both
the design and portability of a network package.

7.2 Administration

Designing the right administrative tools for the network is difficult,
and there is only limited experience with the uses that customers
make of the network to provide good models. However, from usage to
date, it appears that knowledge of the state of remote systems is
valuable feedback for users. In a time-sharing environment, good
network monitoring tools provide a feedback mechanism to users who
are usually unwilling to queue a file transfer to a system that is not
actively accepting transfers. This also helps in reducing congestion
and queuing problems.

For adminstrators, using the network to broadcast updated source
and object modules makes ordinary administrative tasks easier. Mi-
grating users between systems is a common practice when a commu-

PROCESSOR NETWORK 1893

nity of systems is being load balanced, and the network makes this
trivial. The need for a common password file, standard commands and
environments, and standard locations for source and object modules
becomes imperative. Tracing and accounting facilities in the network
software are essential for debugging and isolation of problems.

The distribution and automatic installation of network software
revisions were addressed with only a limited amount of success. Here
it was found that certain classes of updates of the network software
required shutting down large regions or the entire network.

7.3 Compatibility

Providing a package that runs on different operating systems or on
different implementations of the same operating system imposes many
design constraints and creates pressure to get basic protocols and
functionality right the first time. Retrofitting a large network with
new features that require protocol changes is something that should
be avoided but planned for as part of the protocols.

7.4 Peer pressure

When different processors run a standard operating system on a
network, users are quick to make comparisons between systems. A
positive result is that this often generates pressure to improve each of
the implementations. Sometimes, however, such comparisons cause
users with large applications to migrate their work to faster machines.
Comparisons between processors that are orders of magnitude differ-
ent in power (VAX and 3033AP) must also factor in the cost per user
of the equipment.

Vill. CONCLUSION

We can see how a standard operating system environment can
simplify the development of network software that is to run across &
variety of processors with different instruction sets and byte orders.
The more radically different the implementation of the operating
system, the more difficult the porting of a network implementation is.
However, the differences can be confined to the device interface. The
_ portability that a standard environment offers allows development to
be concentrated on reliability, functionality, and performance of the
network. The savings in maintenance, training, and distribution of
common source for all processors is incalculable.

A surprising outcome of the work is that a network solution origi-
nally intended to provide an interim capability for prototyping more
ambitious services is enjoying an extended lifetime since it satisfies
most of the users’ currently perceived needs (high throughput and low
queuing time). It is believed that this has occurred because of the

1894 TECHNICAL JOURNAL, OCTOBER 1984

relatively low expectations of users concerning machine-to-machine
communication. As such, the confidence gained by users in using a
reliable high-speed network and the experience gained in dealing with
the administrative problems of the network will be invaluable in the
future.

IX. ACKNOWLEDGMENTS

Many people have contributed to the construction of the HYPER-
channel networks throughout AT&T Bell Laboratories. In particular,
Jeff Kinker, Tom Fisher, Joe Hall, Tom Giamaressi, Mick McKillip,
Chuck Borcher, Ian Johnstone, Sherry Shulman, Kang Yueh, John
Puttress, and a number of others have contributed a great deal of time
and expertise to the development of the network.

REFERENCES

1. D. A. Nowitz and M. E. Lesk, “Implementation of a Dial-Up Network of UNIX
Systems,” Fall 1980 COMPCON, Washington, D.C., pp. 483-6.

2. C.Jd. Antonelli, L. S. Hamilton, P. M. Lu, J. J. Wallace, and K. Yueh, “SDS/NET—
An Interactive Distributed Operating System,” Fall 1980 COMPCON, Washing-
ton, D.C., pp. 487-93.

. J. E. Allers, é, T. Hamilton, and J. A. Kukla, “The 5 ESS™ Switching System:
Robust and Ready for Change,” Bell Lab. Rec., 61, No. 5 (May-June 1983), pp.

4-9,

. W. A. Felton, G. L. Miller, and J. M. Milner, “The UNIX System: A UNIX System
Implementation for System/370,” AT&T Bell Lab. Tech. J., this issue.

. H. Lycklama and D. L. Bayer, “UNIX Time-Sharing System: The MERT Operating
System,” B.S.T.J., 57, No. 6 (July-August 1978), pp. 2049-86.

. M. E. Grezelakowski, J. H. Campbell, and M. R. Dubman, “The 3B20D Processor
& DMERT Operating System: DMERT Operating System,” B.S.T.J., 62, No. 1,
Part 2 (January 1983}, pp. 303-22.

. T. M. Raleigh, “Introduction to Scheduling and Switching under UNIX,” Spring
1976, DECUS Atlanta, GA, pp. 867-71.

. Network Systems Corporation, “NSC HYPERchannel System Description,” Net-
work Systems Corp., 7600 Boone Ave. N., Minneapolis, MN 55428.

w

(=22 LI

g =3

AUTHORS

Thomas E. Fritz, B.S. (Chemistry), 1976, Moravian College; M.S. (Computer
Science), 1979, Iowa State University; AT&T Bell Laboratories, 1979—. Mr.
Fritz has been involved with the design and development of UNIX system
networking products, including work on the HYPERchannel software and the
AT&T 3B20S interface to the HYPERchannel. He is currently a member of
the UNIX Systems Development department.

Joseph E. Hefner, B.E.E., 1969, University of Dayton; M.S. (Bioengineer-
ing), 1976, Polytechnic Institute of Brooklyn; Sperry Rand Corporation, 1969-
1976; U. S. Naval Systems Center, 1976-1982; AT&T Bell Laboratories,
1982—. From 1969 to 1982 Mr. Hefner was involved with systems engineering
and software development for submarine navigation and sonar systems, both
as an employee of Sperry Systems Management Division of Sperry Rand and
as a civilian employee of the U. S. Navy at a research and development
laboratory in New London, Connecticut. In 1982 he joined the technical staff
at AT&T Bell Laboratories in support of UNIX system networking developing.

PROCESSOR NETWORK 1895

Mr. Hefner worked on the HYPERchannel software and other UNIX net-
working products. He is currently working in the UNIX Systems Development
department.

Thomas M. Raleigh, B.S.E.E. (Electrical Engineering), 1970, The Cooper
Union; M.S.E.E.C.S., 1971, University of California at Berkeley; AT&T Bell
Laboratories, 1971-1983. Present affiliation Bell Communications Research,
Inc. Mr. Raleigh joined AT&T Bell Laboratories in 1971 where he initially
worked on a multiprocessor missile flight simulator for the Safeguard project.
In 1973, he joined the initial development group for the UNIX operating
system. In 1977, he became responsible for the development of the UNIX
Real-Time (RT) operating system software, a precursor to the DMERT
(UNIX Real-Time Response [RTR]) operating system. Since 1979, Mr. Ra-
leigh has supervised groups responsible for UNIX operating system design,
local area networks, real-time operating systems, and paging operating sys-
tems. In 1983, he joined Bell Communications Research as a District Manager
in charge of Distributed Computing Research, where his interests are in
multiple microprocessor operating systems.

1896 TECHNICAL JOURNAL, OCTOBER 1984

