
AT&T Bell Laboratories Technical Journal
Vol. 63, No.8, October 1984
Printed in U.S.A.

The UNIX System:

A Stream Input-Output System

By D. M. RITCHIE*

(Manuscript received October 18, 1983)

In a new version of the UNIX" operating system, a flexible-coroutine-based
design replaces the traditional rigid connection between processes and termi­
nals or networks. Processing modules may be inserted dynamically into the
stream that connects a user's program to a device. Programs may also connect
directly to programs, providing interprocess communication.

I. INTRODUCTION

The part of the UNIX operating system that deals with terminals
and other character devices has always been complicated. In recent
versions of the system it has become even more so, for two reasons,

1. Network connections require protocols more ornate than are
easily accommodated in the existing structure. A notion of "line
disciplines" was only partially successful, mostly because in the tra­
ditional system only one line discipline can be active at a time.

2. The fundamental data structure of the traditional character I/O
system, a queue of individual characters (the "clist"), is costly
because it accepts and dispenses characters one at a time. Attempts

* AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with­
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis­
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

1897



to avoid overhead by bypassing the mechanism entirely or by intro­
ducing ad hoc routines succeeded in speeding up the code at the
expense of regularity.
Patchwork solutions to specific problems were destroying the modu­
larity of this part of the system. The time was ripe to redo the whole
thing. This paper describes the new organization.

The system described here runs on about 20 machines in the
Information Sciences Research Division of AT&T Bell Laboratories.
Although the system is being investigated in other parts of AT&T Bell
Laboratories, it is not generally available.

II. OVERVIEW

This section summarizes the nomenclature, components, and mech­
anisms of the new I/O system.

2.1 Streams

A stream is a full-duplex connection between a user's process and
a device or pseudo-device. It consists of several linearly connected
processing modules, and is analogous to a shell pipeline, except that
data flows in both directions. The modules in a stream communicate
almost exclusively by passing messages to their neighbors. Except for
some conventional variables used for flow control, modules do not
require access to the storage of their neighbors. Moreover, a module
provides only one entry point to each neighbor, namely a routine that
accepts messages.

At the end of the stream closest to the process is a set of routines
that provide the interface to the rest of the system. A user's wr i te
and I/O control requests are turned into messages sent to the stream,
and read requests take data from the stream and pass it to the user.
At the other end of the stream is a device driver module. Here, data
arriving from the stream is sent to the device; characters and state
transitions detected by the device are composed into messages and
sent into the stream towards the user program. Intermediate modules
process the messages in various ways.

The two end modules in a stream become connected automatically
when the device is opened; intermediate modules are attached dynam­
ically by request of the user's program. Stream processing modules are
symmetrical; their read and write interfaces are identical.

2.2 Queues

Each stream processing module consists of a pair of queues, one for
each direction. A queue comprises not only a data queue proper, but
also two routines and some status information. One routine is the put

1898 TECHNICAL JOURNAL, OCTOBER 1984



procedure, which is called by its neighbor to place messages on the
data queue. The other, the service procedure, is scheduled to execute
whenever there is work for it to do. The status information includes a
pointer to the next queue downstream, various flags, and a pointer to
additional state information required by the instantiation of the queue.
Queues are allocated in such a way that the routines associated with
one half of a stream module may find the queue associated with the
other half. (This is used, for example, in generating echos for terminal
input.)

2.3 Message blocks

The objects passed between queues are blocks obtained from an
allocator. Each contains a read pointer, a write pointer, and a limit
pointer, which specify respectively the beginning of information being
passed, its end, and a bound on the extent to which the write pointer
may be increased.

The header of a block specifies its type; the most common blocks
contain data. There are also control blocks of various kinds, all with
the same form as data blocks and obtained from the same allocator.
For example, there are control blocks to introduce delimiters into the
data stream, to pass user I/O control requests, and to announce special
conditions such as line break and carrier loss on terminal devices.

Although data blocks arrive in discrete units at the processing
modules, boundaries between them are semantically insignificant;
standard subroutines may try to coalesce adjacent data blocks in the
same queue. Control blocks, however, are never coalesced.

2.4 Scheduling

Although each queue module behaves in some ways like a separate
process, it is not a real process; the system saves no state information
for a queue module that is not running. In particular queue processing
routines do not block when they cannot proceed, but must explicitly
return control. A queue may be enabled by mechanisms described
below. When a queue becomes enabled, the system will, as soon as
convenient, call its service procedure entry, which removes successive
blocks from the associated data queue, processes them, and places
them on the next queue by calling its put procedure. When there are
no more blocks to process, or when the next queue becomes full, the
service procedure returns to the system. Any special state information
must be saved explicitly.

Standard routines make enabling of queue modules largely auto­
matic. For example, the routine that puts a block on a queue enables
the queue service routine if the queue was empty.

STREAM INPUT-OUTPUT SYSTEM 1899



USER DEVICE
• •

WRITE OUT

USER DEVICE
• •

READ IN

Fig. I-Configuration after device open.

2.5 Flow control

Associated with each queue is a pair of numbers used for flow
control. A high-water mark limits the amount of data that may be
outstanding in the queue; by convention, modules do not place data
on a queue above its limit. A low-water mark is used for scheduling in
this way: when a queue has exceeded its high-water mark, a flag is set.
Then, when the routine that takes blocks from a data queue notices
that this flag is set and that the queue has dropped below the low­
water mark, the queue upstream of this one is enabled.

III. SIMPLE EXAMPLES

Figure 1 depicts a stream device that has just been opened. The top­
level routines, drawn as a pair of half-open rectangles on the left, are
invoked by users' read and wr i te calls. The writer routine sends
messages to the device driver shown on the right. Data arriving from
the device is composed into messages sent to the top-level reader
routine, which returns the data to the user process when it executes
read.

Figure 2 shows an ordinary terminal connected by an RS-232 line.
Here a processing module (the pair of rectangles in the middle) is
interposed; it performs the services necessary to make terminals
usable, for example echoing, character-erase and line-kill, tab expan­
sion as required, and translation between carriage-return and new­
line. It is possible to use one of several terminal handling modules.
The standard one provides services like those of the Seventh Edition
system;' another resembles the Berkeley "new tty" driver.'

The processing modules in a stream are thought of as a stack whose
top (shown here on the left) is next to the user program. Thus, to

USER •
WRITE

USER

READ

DEVICE•
OUT

DEVICE
•

IN

Fig. 2-Configuration for normal terminal attachment.

1900 TECHNICAL JOURNAL, OCTOBER 1984



•

USER

WRITE

USER

READ

TTY OUT

TTY IN

PROTO OUT

PROTO IN

DEVICE•
OUT

DEVICE
•

IN

Fig. 3-Configuration for network terminals.

install the terminal processing module after opening a terminal device,
the program that makes such connections executes a "push" I/O
control call naming the relevant stream and the desired processing
module. Other primitives pop a module from the stack and determine
the name of the topmost module.

Most of the machines using the version of the operating system
described here are connected to a network based on the Datahit"
packet switch," Although there is a variety of host interfaces to the
network, most of ours are primitive, and require network protocols to
be conducted by the host machine, rather than by a front-end proces­
sor. Therefore, when terminals are connected to a host through the
network, a setup like that shown in Fig. 3 is used; the terminal
processing module is stacked on the network protocol module. Again,
there is a choice of protocol modules, both a current standard and an
older protocol that is being phased out.

A common fourth configuration (not illustrated) is used when the
network is used for file transfers or other purposes when terminal
processing is not needed. It simply omits the "tty" module and uses
only the protocol module. Some of our machines, on the other hand,
have front-end processors programmed to conduct standard network
protocol. Here a connection for remote file transfer will resemble that
of Fig. 1, because the protocol is handled outside the operating system;
likewise network terminal connections via the front end will be han­
dled as shown in Fig. 2.

IV. MESSAGES

Most of the messages between modules contain data. The allocator
that dispenses message blocks takes an argument specifying the small­
est block its caller is willing to accept. The current allocator maintains
an inventory of blocks 4, 16, 64, and 1024 characters long. Modules
that allocate blocks choose a size by balancing space loss in block
linkage overhead against unused space in the block. For example, the
top-level wr i te routine requests either 64- or 1024-character blocks,
because such calls usually transmit many characters; the network
input routine allocates 16-byte blocks because data arrives in packets

STREAM INPUT-OUTPUT SYSTEM 1901



of that size. The smallest blocks are used only to carry arguments to
the control messages discussed below.

Besides data blocks, there are also several kinds of control messages.
The following messages are queued along with data messages in order
to ensure that their effect occurs at the appropriate time.

BREAK is generated by a terminal device on detection of a line break
signal. The standard terminal input processor turns this
message into an interrupt request. It may also be sent to a
terminal device driver to cause it to generate a break on the
output line.

HANGUP is generated by a device when its remote connection drops.
When the message arrives at the top level it is turned into an
interrupt to the process, and it also marks the stream so that
further attempts to use it return errors.

DELIM is a delimiter in the data. Most of the stream I/O system is
prepared to provide true streams, in which record boundaries
are insignificant, but there are various situations in which it
is desirable to delimit the data. For example, terminal input
is read a line at a time; DELIM is generated by the terminal
input processor to demarcate lines.

DELAY tells terminal drivers to generate a real-time delay on output;
it allows time for slow terminals to react to characters previ­
ously sent.

IOCTL messages are generated by users' ioctl system calls. The
relevant parameters are gathered at the top level, and if the
request is not understood there, it and its parameters are
composed into a message and sent down the stream. The first
module that understands the particular request acts on it and
returns a positive acknowledgment. Intermediate modules
that do not recognize a particular ioctl request pass it on;
stream-end modules return a negative acknowledgment. The
top-level routine waits for the acknowledgment, and returns
any information it carries to the user.

Other control messages are asynchronous and jump over queued data
and nonpriority control messages.

IOCACK acknowledge ioctl messages. The device end of a stream
IOCNAK must respond with one of these messages; the top level will

eventually time out if no response is received.
SIGNAL messages are generated by the terminal processing module

and cause the top level to generate process signals such as
qui t and interrupt.

1902 TECHNICAL JOURNAL, OCTOBER 1984



FLUSH messages are used to throwaway data from input and output
queues after a signal or on request of the user.

STOP messages are used by the terminal processor to halt and
START restart output by a device, for example to implement the

traditional control-S/control-Q (X-on/X-off) flow control
mechanism.

/* flag bits */
/* put procedure */
/* service procedure */
/* next queue downstream */
/* first data block on queue */
/* last data block on queue */
/* max characters on queue */
/* wakeup point as queue

drains */
/* characters now on queue */
/* pointer to private storage */

count;
*ptr;

int
void

V. QUEUE MECHANISMS AND INTERFACES

Associated with each direction of a full-duplex stream module is a
queue data structure with the following form (somewhat simplified for
exposition).

struct queue I
int flag;
void (*putp)();
void (*servp)();
struct queue *next;
struct block *first;
struct block *last;
int hiwater;
int lowater;

) ;

The flag word contains several bits used by low-level routines to
control scheduling; they show whether the downstream module wishes
read data, or the upstream module wishes to write, or the queue is
already enabled. One bit is examined by the upstream module; it tells
whether this queue is full.

The first and last members point to the head and tail of a singly
linked list of data and control blocks that form the queue proper;
hiwater and lowater are initialized when the queue is created, and
when compared against count, the current size ofthe queue, determine
whether the queue is full and whether it has emptied sufficiently to
enable a blocked writer.

The ptr member stores an untyped pointer that may be used by the
queue module to keep track of the location of storage private to itself.
For example, each instantiation of the terminal processing module
maintains a structure containing various mode bits and special char­
acters; it stores a pointer to this structure here. The type of ptr is
artificial. It should be a union of pointers to each possible module
state structure.

Stream processing modules are written in one of two general styles.

STREAM INPUT-OUTPUT SYSTEM 1903



In the simpler kind, the queue module acts nearly as a classical
coroutine. When it is instantiated, it sets its put procedure putp to a
system-supplied default routine, and supplies a service procedure
servp. Its upstream module disposes of blocks by calling this module's
putp routine, which places the block on this module's queue (by
manipulating the first and last pointers). The standard put pro­
cedure also enables the current module; a short time later the current
module's service procedure servp is called by the scheduler. In pseu­
docode, the outline of a typical service routine is:

service(q)
struct queue *q

while (q is not empty and q_next is not full)
get a block from q
process message block
call q_next_putp to dispose of

new or transformed block

This mechanism is appropriate in cases in which messages can be
processed independently of each other. For example, it is used by the
terminal output module. All the scheduling details are taken care of
by standard routines.

More complicated modules need finer control over scheduling. A
good example is terminal input. Here the device module upstream
produces characters, usually one at a time, that must be gathered into
a line to allow for character erase and kill processing. Therefore the
stream input module provides a put procedure to be called by the
device driver or other module downstream from it; here is an outline
of this routine and its accompanying service procedure:

putproc (q, bp)
struct queue *q; struct block *bp

put bp on q
echo characters in bp' s data
if (bp's data contains new-line or carriage return)

enable q
service(q)
struct queue *q

take data from q until new-line or carriage return,
processing erase and kill characters

call q_next_putp to hand line to upstream queue
call q_next_putp wi th DELIM message

The put procedure generates the echo characters as promptly as
possible; when the terminal module is attached to a device handler,

1904 TECHNICAL JOURNAL, OCTOBER 1984



they are created during the input interrupt from the device, because
the put procedure is called as a subroutine of the handler. On the
other hand, line-gathering and erase and kill processing, which can be
lengthy, are done during the service procedure at lower priority.

VI. CONNECTION WITH THE REST OF THE SYSTEM

Although all the drivers for terminal and network devices, and all
protocol handlers, were rewritten, only minor changes were required
elsewhere in the system. Character devices and a character device
switch, as described by Thompson," are still present. A pointer in the
character device switch structure, if null, causes the system to treat
the device as always; this is used for raw disk and tape, for example.
If not null, it points to initialization information for the stream device;
when a stream device is opened, the queue structure shown in Fig. 1
is created, using this information, and a pointer to the structure
naming the stream is saved (in the "inode table'").

Subsequently, when the user process makes read, wr i te, ioctl, or
close calls, presence of a non-null stream pointer directs the system
to use a set of stream routines to generate and receive queue messages;
these are the "top-level routines" referred to previously.

Only a few changes in user-level code are necessary, most because
opening a terminal puts it in the "very raw" mode shown in Fig. 1. In
order to install the terminal-processing handler, it is necessary for
programs such as ini t to execute the appropriate ioctl call.

VII. INTERPROCESS COMMUNICATION

As previously described, the stream I/O system constitutes a flexible
communication path between user processes and devices. With a small
addition, it also provides a mechanism for interprocess communica­
tion. A special device, the "pseudo-terminal" or PT, connects proc­
esses. PT files come in even-odd pairs; data written on the odd member
of the pair appears as input for the even member, and vice versa. The
idea is not new; it appears in Tenex" and its successors, for example.
It is analogous to pipes, and especially to named pipes," PT files differ
from traditional pipes in two ways: they are full-duplex, and control
information passes through them as well as data. They differ from the
usual pseudo-terminal files'' by not having any of the usual terminal
processing mechanisms inherently attached to them; they are pure
transmitters of control and data messages. PT files are adequate for
setting up a reasonably general mechanism for explicit process com­
munication, but by themselves are not especially interesting.

A special message module provides more intriguing possibilities. In
one direction, the message processor takes control and data messages,
such as those discussed above, and transforms them into data blocks

STREAM INPUT-OUTPUT SYSTEM 1905



-DEVICE
PROCESS-

-USER
PROCESS-

PT

PT

J
Fig. 4-Configuration for device simulator.

starting with a header giving the message type, and followed by the
message content. In the other direction, it parses similarly structured
data messages and creates the corresponding control blocks. Figure 4
shows a configuration in which a user process communicates through
the terminal module, a PT file pair, and the message module with
another user-level process that simulates a device driver. Because PT
files are transparent, and the message module maps bijectively between
device-process data and stream control messages, the device simulator
may be completely faithful up to details of timing. In particular, user's
ioctl requests are sent to the device process and are handled by it,
even if they are not understood by the operating system.

The usefulness of this setup is not so much to simulate new devices,
but to provide ways for one program to control the environment of
another. Pike? shows how these mechanisms are used to create mul­
tiple virtual terminals on one physical terminal. In another applica­
tion, intermachine connections in which a user on one computer logs
into another make use of the message module. Here the ioctl requests
generated by programs on the remote machine are translated by this
module into data messages that can be sent over the network. The
local callout program translates them back into terminal control
commands.

VIII. EVALUATION

My intent in rewriting the character I/O system was to improve its
structure by separating functions that had been intertwined, and by
allowing independent modules to be connected dynamically across
well-defined interfaces. I also wanted to make the system faster and
smaller. The most difficult part of the project was the design of the
interface. It was guided by these decisions:

1. It seemed to be necessary for efficiency that the objects passed
between modules be references to blocks of data. The most important

1906 TECHNICAL JOURNAL, OCTOBER 1984



consequences of this principle, and those that proved deciding, are
that data need not be copied as it passes across a module interface,
and that many characters can be handled during a single intermodule
transmission. Another effect, undesirable but accepted, is that each
module must be prepared to handle discrete chunks of data of unpre­
dictable size. For example, a protocol that expects records containing
(say) an 8-byte header must be prepared to paste together smaller data
blocks and split a block containing both a header and following data.
A related, although not necessarily consequent, decision was to make
the code assume that the data is addressable.

2. I decided, with regret, that each processing module could not act
as an independent process with its own call record. The numbers
seemed against it: on large systems it is necessary to allow for as many
as 1000 queues, and I saw no good way to run this many processes
without consuming inordinate amounts of storage. As a result, stream
server procedures are not allowed to block awaiting data, but instead
must return after saving necessary status information explicitly. The
contortions required in the code are seldom serious in practice, but
the beauty of the scheme would increase if servers could be written as
a simple read-write loop in the true coroutine style.

3. The characteristic feature of the design-the server and put
procedures-was the most difficult to work out. I began with a belief
that the intermodule interface should be identical in the read and
write directions. Next, I observed that a pure call model (put procedure
only) would not work; queueing would be necessary at some point. For
example, if the wr i te system entry called through the terminal proc­
essing module to the device driver, the driver would need to queue
characters internally lest output be completely synchronous. On the
other hand, a pure queueing model (service procedure only; upstream
modules always place their data in an input queue) also appeared
impractical. As discussed above, a module (for example terminal input)
must often be activated at times that depend on its input data.

After considerable churning of details, the model presented here
emerged. In general its performance by various measures lives up to
hopes.

The improvement in modularity is hard to measure, but seems real;
for example, the number of included header files in stream modules
drops to about one half of those required by similar routines in the
base system (4.1 BSD). Certainly stream modules may be composed
more freely than were the "line disciplines" of older systems.

The program text size of the version of the operating system de­
scribed here is about 106 kilobytes on the VAX*; the base system was
about 130 kilobytes. The reduction was achieved by rewriting the

* Trademark of Digital Equipment Corporation.

STREAM INPUT-OUTPUT SYSTEM 1907



various device drivers and protocols and eliminating the Seventh
Edition multiplexed files,' most (though not all) of whose functions
are subsumed by other mechanisms. On the other hand, the data space
has increased. On a VAX-11/750* configured for 32 users about 32
kilobytes are used for storage of the structures for streams, queues,
and blocks. The traditional character lists seem to require less; similar
systems from Berkeley and AT&T use between 14 and 19 kilobytes.
The tradeoff of program for data seems desirable.

Proper time comparisons have not been made, because of the diffi­
culty of finding a comparable configuration. On a VAX-11/750, print­
ing a large file on a directly connected terminal consumes 346 micro­
seconds per character using the system described here; this is about
10 percent slower than the base system. On the other hand, that
system's per-character interrupt routine is coded in assembly language,
and the rest of its terminal handler is replete with nonportable
interpolated assembly code; the current system is written completely
in C. Printing the same file on a terminal connected through a
primitive network interface requires 136 microseconds per character,
half as much as the older network routines. Pike7 observes that among
the three implementations of Blit connection software, the one based
on the stream system is the only one that can down load programs at
anything approaching line speed through a 19.2 kb/s connection. In
general I conclude that the new organization never slows comparable
tasks much, and that considerable speed improvements are sometimes
possible.

Although the new organization performs well, it has several pecu­
liarities and limitations. Some ofthem seem inherent, some are fixable,
and some are the subject of current work.

I/O control calls turn into messages that require answers before a
result can be returned to the user. Sometimes the message ultimately
goes to another user-level process that may reply tardily or never. The
stream is write-locked until the reply returns, in order to eliminate
the need to determine which process gets which reply. A timeout
breaks the lock, so there is an unjustified error return if a reply is late,
and a long lockup period if one is lost. The problem can be ameliorated
by working harder on it, but it typifies the difficulties that turn up
when direct calls are replaced by message-passing schemes.

Several oddities appear because time spent in server routines cannot
be assigned to any particular user or process. It is impossible, for
example, for devices to support privileged Lo c t I calls, because the
device has no idea who generated the message. Accounting and sched­
uling become less accurate; a short census of several systems showed
that between 4 and 8 percent of non-idle CPU time was being spent
in server routines. Finally, the anonymity of server processing most

1908 TECHNICAL JOURNAL, OCTOBER 1984



certainly makes it more difficult to measure the performance of the
new I/O system.

In its current form the stream I/O system is purely data-driven.
That is, data is presented by a user's wr i te call, and passes through
to the device; conversely, data appears unbidden from a device and
passes to the top level, where it is picked up by read calls. Wherever
possible flow control throttles down fast generators of data, but
nowhere except at the consumer end of a stream is there knowledge
of precisely how much data is desired. Consider a command to execute
a possibly interactive program on another machine connected by a
stream. The simplest such command sets up the connection and
invokes the remote program, and then copies characters from its own
standard input to the stream, and from the stream to its standard
output. The scheme is adequate in practice, but breaks when the user
types more than the remote program expects. For example, if the
remote program reads no input at all, any typed-ahead characters are
sent to the remote system and lost. This demonstrates a problem, but
I know of no solution inside the stream I/O mechanism itself; other
ideas will have to be applied.

Streams are linear connections; by themselves, they support no
notion of multiplexing, fan-in or fan-out. Except at the ends of a
stream, each invocation of a module has a unique "next" and "pre­
vious" module. Two locally important applications of streams testify
to the importance of multiplexing: Blit terminal connections," where
the multiplexing is done well, though at some performance cost, by a
user program, and remote execution of commands over a network,
where it is desired, but not now easy, to separate the standard output
from error output. It seems likely that a general multiplexing mecha­
nism could help in both cases, but again, I do not yet know how to
design it.

Although the current design provides elegant means for controlling
the semantics of communication channels already opened, it lacks
general ways of establishing channels between processes. The PT files
described above are just fine for Blit layers, and work adequately for
handling a few administrator-controlled client-server relationships.
(Yes, we have multimachine mazewar.) Nevertheless, better naming
mechanisms are called for.

In spite of these limitations, the stream I/O system works well. Its
aim was to improve design rather than to add features, in the belief
that with proper design, the features come cheaply. This approach is
arduous, but continues to succeed.

REFERENCES

1. Unix Programmer's Manual, Seventh Edition, Bell Laboratories, Murray Hill, NJ
(January 1979).

STREAM INPUT-OUTPUT SYSTEM 1909



2. Unix Programmer's Manual, Virtual VAX-ll Version, University of California,
Berkeley (June 1981).

3. A. G. Fraser, "Datakit-A Modular Network for Synchronous and Asynchronous
Traffic," Proc. Int. Conf. on Commun., Boston, MA (June 1979).

4. K. Thompson, "UNIX Time-Sharing Sytem: UNIX Implementation," B.S.T.J. 57,
No.6 (July-August 1978), pp. 1931-1946.

5. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "TENEX, a
Paged Time Sharing System for the PDP·lO," Comm. Assoc. Compo Mach. 15,
No.3 (March 1972), pp. 135-143.

6. T. A. Dolotta, S. B. Olsson, and A. G. Petrucelli, Unix User's Manual, Release 3.0,
Bell Laboratories, Murray Hill, NJ (June 1980).

7. R. Pike, "The Blit: A Multiplexed Graphics Terminal," AT&T Bell Lab. Tech. J.,
this issue.

AUTHOR
Dennis M. Ritchie, B.A. (Physics), 1963, Ph.D. (Applied Mathematics),
1968, Harvard University; AT&T Bell Laboratories, 1978-. The subject of
Mr. Ritchie's doctoral thesis was subrecursive hierarchies of functions. Since
joining AT&T Bell Laboratories, he has worked on the design of computer
languages and operating systems. After contributing to the Multics project, he
joined K. Thompson in the creation of the UNIX operating system, and
designed and implemented the C language, in which the system is written. In
1982 he shared the IEEE Emmanuel Piore award with Thompson, and in 1983
he and Thompson won the ACM Turning award. His current research is
concerned with the structure of operating systems.

1910 TECHNICAL JOURNAL, OCTOBER 1984


