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C is a general-purpose programming language that has proven useful 
for a wide variety of applications. It is the primary language of the 
UNIX* system, and is also available in several other environments. This 
paper provides an overview of the syntax and semantics of C and a dis­
cussion of its strengths and weaknesses. 

C is a general-purpose programming language featuring economy 
of expression, modern control flow and data structure capabilities, 
and a rich set of operators and data types. 

C is not a "very high-level" language nor a big one and is not spe­
cialized to any particular area of application. Its generality and an 
absence of restrictions make it more convenient and effective for 
many tasks than supposedly more powerful languages. C has been 
used for a wide variety of programs, including the UNIX operating 
system, the C compiler itself, and essentially all UNIX applications 
software. The language is sufficiently expressive and efficient to 
have completely displaced assembly language programming on UNIX. 

C was originally written for the PDP-11 under UNIX, but the 
language is not tied to any particular hardware or operating system. 
C compilers run on a wide variety of machines, including the 
Honeywell 6000, the IBM System/370, and the Interdata 8/32. 

* UNIX is a trademark of Bell Laboratories. 
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I. THE LINGUISTIC HISTORY OF C 

The C language in use today1 is the product of several years of 
evolution. Many of its most important ideas stem from the consid­
erably older, but still quite vital, language BCPL2 developed by Mar­
tin Richards. The influence of BCPL on C proceeded indirectly 
through the language B, 3 which was written by Ken Thompson in 
1970 for the first UNIX system on the PDP-11. 

Although neither Â nor C could really be considered dialects of 
BCPL, both share several characteristic features with it: 

(/) All are able to express the fundamental flow-control construc­
tions required for well-structured programs: statement group­
ing, decision-making (if), looping (while) with the termina­
tion test either at the top or the bottom of the loop, and 
branching out to a sequence of possible cases (switch). It is 
interesting that BCPL provided these constructions in 1967, 
well before the current vogue for "structured programming." 

(/'/) All three languages include the concept of "pointer" and pro­
vide the ability to do address arithmetic. 

(/'//') In all three languages, the arguments to functions are passed 
by copying the value of the argument, and it is impossible for 
the function to change the actual argument. When it is 
desired to achieve "call by reference," a pointer may be 
passed explicitly, and the function may change the object to 
which the pointer points. Any function is allowed to be 
recursive, and its local variables are typically "automatic" or 
specific to each invocation. 

(/v) All three languages are rather low-level, in that they deal with 
the same sorts of objects that most computers do. BCPL and Â 
restrict their attention almost completely to machine words, 
while C widens its horizons somewhat to characters and (pos­
sibly multi-word) integers and floating-point numbers. None 
deals directly with composite objects such as character strings, 
sets, lists, br arrays considered as a whole. The languages 
themselves do not define any storage allocation facility beside 
static definition and the stack discipline provided by the local 
variables of functions; likewise, I/O is not part of any of these 
languages. All these higher mechanisms must be provided by 
explicitly called routines from libraries. 

Â and BCPL differ mainly in their syntax, and many differences 
stemmed from the very small size of the first Â compiler (fewer 
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than 4 K 18-bit words on the PDP-7). Several constructions in BCPL 
encourage a compiler to maintain a representation of the entire pro­
gram in memory. In BCPL, for example, 

valof $( 

resultis expression 

$) 

is syntactically an expression. It provides a way of packaging a block 
of many statements into a sort of unnamed internal procedure yield­
ing a single result (delivered by the resultis statement). The valof 
construction can occur in the middle of any expression, and can be 
arbitrarily large. The Â language avoided the difficulties caused by 
this and some other constructions by rigorously simplifying (and in 
some cases adjusting to personal taste) the syntax of BCPL. 

In spite of many syntactic changes, Â remained very close to BCPL 
semantically. The most characteristic feature of both languages is 
their nearly identical treatment of addresses (pointers). They sup­
port a model of the storage of the machine consisting of a sequence 
of equal-sized cells, into which values can be placed; in typical 
implementations, these cells will be machine words. Each identifier 
in a program corresponds to a cell, and a cell may contain a variety 
of values. Most often the value is an integer, or perhaps a represen­
tation of a character. All the cells, however, are numbered; the 
address of a cell is just the integer giving its ordinal position, BCPL 
has a unary operator Iv (in some versions, and also in Â and C, 
shortened to &) that, when applied to a name, yields the address of 
the cell corresponding to the name. The inverse operator rv (later 
· ) yields the value in the cell pointed to its argument. Thus the 
statement 

px - &x; 

of Â assigns to px the number that can be interpreted as the address 
of x; the statements 

y =• ·ń÷ + 2; 
«px — 5; 

first use the value in the cell pointed to by px (which is the same 
cell as x) and then assign 5 to this cell. 

Arrays in BCPL and Â are intimately tied up with pointers. An 
array declaration, which might in BCPL be written 
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let Array = vec 10 

and in Â 

auto Array[10]; 

creates a single cell named Array and initializes it with the address 
of the first of a sequence of 10 unnamed cells containing the array 
itself. Since the quantity stored in Array is just the address of the 
cell of the first element of the array, the expression 

Array + I 

is the address of the ith element, counting from zero. Likewise, 
applying the indirection operator, 

• (Array + i) 

refers to the value of the ith member of the array. This operation is 
so frequent that special syntax was invented to express it: 

Array [i] 

Thus, despite its asymmetric appearance, subscripting is a commuta­
tive operation; the above example could equally well be written 

I [Array] 

In BCPL and Â there is only one type of object, the machine word, 
so when the same language operator is applied to two operands, the 
calculation actually carried out must always be the same. Thus, for 
example, if one wishes to provide the ability to do floating-point 
arithmetic, the " + " operator notation cannot be used, since it 
implies an integer addition. Instead (in a version of BCPL for the GE 
635), a "." was placed in front of each operator that had floating­
point operands. As may be appreciated, this was a frequent source 
of errors. 

The machine model implied by the definitions of BCPL and Â is 
simple and self-consistent. It is, however, inadequate for many pur­
poses, and on many machines it causes inefficiencies when imple­
mented. The problems became evident to us after Â began to be 
used heavily on the first PDP-11 version of UNIX. The first followed 
from the fact that the PDP-11, like a number of machines (including, 
for example, the IBM System/370), is byte addressed; a machine 
address refers to any of several bytes (characters) in a word, not the 
word alone. Most obviously, the word orientation of Â cut us off 
from any convenient ability to access individual bytes. Equally 
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important was the fact that before any address could be used, it had 
to be shifted left by one place. The reason for this is simple: there 
are two bytes per PDP-11 word. On the one hand, the language 
guaranteed that if 1 was added to an address quantity, it would point 
to the next word; on the other, the machine architecture required 
that word addresses be even and equal to the byte number of the 
first byte in the word. Since, finally, there was no way to distinguish 
cells containing ordinary integers from those containing pointers, the 
only solution visible was to represent pointers as word numbers and 
then, at the point of use, convert to the byte representation by mul­
tiplication by 2. 

Yet another problem was introduced by the desire to provide for 
floating-point arithmetic. The PDP-11 supports two floating-point 
formats, one of which requires two words, the other four. In nei­
ther case was it satisfactory to use the trick used on the GE 635 
(operators like ". + ") because there was no way to represent the 
requirement for a single data item occupying four or eight bytes. 
This problem did not arise on the 635 because integers and single-
precision floating-point both require only one word. 

Thus the problems evidenced by Â led us to design a new 
language that (after a brief period under the name NB) was dubbed 
C. The major advance provided by C is its typing structure, which 
completely solved the difficulties mentioned above. Each declara­
tion in a C program specifies (sometimes implicitly) a type, which 
determines how much storage the object requires and how it is to be 
interpreted. The original fundamental types provided were single 
character (byte), integer, single-precision floating-point, and 
double-precision floating-point. (Others discussed below were added 
later.) Thus in the program 

double a, b; 

a - b + 3; 
the compiler is able to determine from the declarations of a and b 
the fact that they require four words of storage each, that the " + " 
means a double-precision floating add, and that " 3 " must be con­
verted to floating. 

Of course, the idea of typing variables is in no way original with 
C; in fact, it was the general rule among the most widely used and 
influential languages, including Algol, Fortran, and PL/I. Neverthe­
less, the introduction of types marked an important change in our 
own thinking. The typeless nature of BCPL and Â had seemed to 
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promise a great simplification in the implementation, understanding, 
and use of these languages. By the time that C was created (circa 
1972), advocates of languages like Algol 68 and Pascal recom­
mended a strongly enforced type structure on psychological grounds; 
but even disregarding their arguments, the typeless nature of BCPL 
and Â seemed inappropriate, for purely technological reasons, to the 
available hardware. 

II. THE TYPE STRUCTURE OF C 

The introduction of types in C, although a major departure from 
the tradition of BCPL and B, was done in such a way that many of 
the characteristic usages of the earlier languages survived. To some 
extent, this continuity was an attempt to preserve as much as possi­
ble of the considerable corpus of existing software written in B, but 
even more important, especially in retrospect, was the desire to 
minimize the intellectual distance between the past and the future 
ways of expression. 

2.1 Pointers, arrays and address arithmetic 

One clear example of the similarity of C to the earlier languages is 
its treatment of pointers and arrays. In C an array of 10 integers 
might be declared 

int Array[101; 

which is identical to the corresponding declaration in B. (Arrays 
begin at zero; the elements of Array are Array[0], Array[9].) As 
discussed above, the Â implementation caused a cell named Array to 
be allocated and initialized with a pointer to 10 otherwise unnamed 
cells to hold the array. In C, the effect is a bit different; 10 integers 
are allocated, and the first is associated with the name Array. But C 
also includes a general rule that, whenever the name of an array 
appears in an expression, it is converted to a pointer to the first 
member of the array. Strictly speaking, we should say, for this 
example, it is converted to an integer pointer since all C pointers are 
associated with a particular type to which they point. In most 
usages, the actual effects of the slightly different meanings of Array 
are indistinguishable. Thus in the C expression 

Array + i 

the identifier Array is converted to a pointer to the first element of 
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the array; i is scaled (if required) before it is added to the pointer. 
For a byte-addressed machine, the scale factor is the number of 
bytes in an integer; for a word-addressed machine the scale factor is 
unity. In any event, the result is a pointer to the ith member of the 
array. Likewise identical in effect to the interpretation of B, 

• (Array + i) 

is the ith member itself, and 

Arrayli] 

is another notation for the same thing. In all these cases, of course, 
should Array be an array of, or pointer to, some objects other than 
integers, the scale factor is adjusted appropriately. The pointer 
arithmetic, as written, is independent of the type of object to which 
the pointer points and indeed of the internal representation of the 
pointer. 

2.2 Derived types 

As mentioned above, the basic types in C were originally int, 
which represents an integer in the basic size provided by the 
machine architecture; char, which represents a single byte; float, a 
single-precision floating-point number; and double, double-precision 
floating-point. Over the years, long, short, and unsigned integers 
have been added. In current C implementations, long is at least 32 
bits; short is usually 16 bits; and int remains the "natural" size for 
the machine at hand. Unsigned integers exist mainly to squeeze an 
extra bit out of the machine, since the sign bit need not be 
represented. 

In addition to these basic types, C provides a conceptually infinite 
hierarchy of derived types, which are formed by composition of the 
basic types with pointers, arrays, structures, unions, and functions. 
Examples of pointer and array declarations have already been exhi­
bited; another is 

double *vecp, vector[100]; 

which declares a pointer vecp to double-precision floating numbers, 
and an array vector of the same kind of objects. The size of an 
array, when specified, must always be a constant. 

A structure is an aggregate of one or more objects, usually of vari­
ous types, which can be treated as a unit. C structures are essen­
tially the same as records in languages like Pascal, and semantically. 
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though not syntactically, like PL/i and Cobol structures. Thus, 

struct tag { 
int i; 
float f; 
char c[3l; 

}; 

defines a template, called tag, for a structure containing three 
members: an integer i, a floating point number f, and a three-
character array c. The declaration 

struct tag ÷, y[10] , ·ń; 

declares a structure ÷ of this type, an array y of 10 such structures, 
and a pointer ń to this kind of structure. The hierarchical nature of 
derived types is clearly evident here: y is an array of structures 
whose members include an array of characters. References to indi­
vidual members of structures use the . operator: 

x.i 
x.f 
y[i].c[0] 
(•P).C[1) 

Parentheses in the last line are necessary because the . binds more 
tightly than · . It turns out that pointers to structures are so com­
mon that special syntax is called for to express structure access 
through a pointer. 

p - > c [ l ] 
p - > i 

This soon becomes more natural than the equivalent 

<«p).c[1] 
(•p).i 

A union is capable of holding, at different times, objects of 
different types, with the compiler keeping track of size and align­
ment requirements. Unions provide a way to manipulate different 
kinds of data in a single part of storage, without embedding 
machine-dependent information (like the relative sizes of int and 
float) in a program. For example, the union u, declared 
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union { 
int i; 
float f; 

! u; 

can hold either an int (written u.i) or a float (written u.f). Regard­
less of the machine it is compiled on, it will be large enough to hold 
either one of these quantities. A union is syntactically identical to a 
structure; it may be considered as a structure in which all the 
members begin at the same offset. Unions in C are more analogous 
to PL/l's CELL than to the unions of Algol 68 or the variant records 
of Pascal, because it is the responsibility of the programmer to avoid 
referring to a union that does not currently contain an object of the 
implied type. 

A function is a subprogram that returns an object of a given type: 

unsigned unsfO; 
declares a function that returns unsigned. The type of a function 
ignores the number and types of its arguments, although in general 
the call and the definition must agree. 

2.3 Type composition 
The syntax of declarations borrows from that of expressions. The 

key idea is that a declaration, say 

int ... ; 

contains a part " . . t h a t , if it appeared in an expression, would be 
of type Int. The constructions seen so far, for example, 

int «iptr; 
Int ifuncO; 
int iarr[10l; 

exhibit this approach, but more complicated declarations are com­
mon. For example, 

int »funcptrO; 
int («ptrluncM); 

declare respectively a function that returns a pointer to an integer, 
and a pointer to a function that returns an integer. The extra 
parentheses in the second are needed to make the · apply directly to 
ptrfunc, since the implicit function-call operator () binds more 
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tightly than · . Functions are not variables, so arrays or structures of 
functions are not permitted. However, a pointer to a function, like 
ptrfunc, may be stored, copied, passed as an argument, returned by 
a function, and so on, just as any other pointer. 

Arrays of pointers are frequently used instead of multi­
dimensional arrays. The usage of a and b when declared 

int a l l0] [10]; 
int *b[10l; 

may be similar, in that a[5][5] and b[5][5] are both legal references 
to a single int, but a is a true array: all 100 storage cells have been 
allocated, and the conventional rectangular subscript calculation is 
done. For b, however, the declaration has only allocated 10 
pointers; each must be set to point to an array of integers. Assum­
ing each does point to a 10-element array, then there will be 100 
storage cells set aside, plus the 10 cells for the pointers. Thus the 
array of pointers uses slightly more space and may require an extra 
initialization step, but has two advantages: it trades an indirection 
for a subscript multiplication, and it permits the rows of the array to 
be of different lengths. (That is, each element of b need not point 
to a 10-element vector; some may point to 2 elements, some to 20). 
Particularly with strings whose length is not known in advance, an 
array of pointers is often used instead of a multidimensional array. 
Every C main program gets access to its invoking command line in 
this form, for example. 

The idea of specifying types by appropriating some of the syntax 
of expressions seems to be original with C, and for the simpler 
cases, it works well. Occasionally some rather ornate types are 
needed, and the declaration may be a bit hard to interpret. For 
example, a pointer to an array of pointers to functions, each return­
ing an int, would be written 

int (•(•funnyarray)[])(); 

which is certainly opaque, although understandable enough if read 
from the inside out. In an expression, funnyarray might appear as 

i — (*(*funnyarray)[j])(k); 

The corresponding Algol 68 declaration is 

ref [] ref proc int funnyarray 

which reads from left to right in correspondence with the informal 
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description of the type if ref is taken to be the equivalent of C 's 
"pointer t o . " The Algol may be clearer, but both are hard to grasp. 

III. STATEMENTS AND CONTROL FLOW 

Control flow in C differs from other languages primarily in details 
of syntax. As in PL / l , semicolons are used to terminate s ta tements , 
not to separate them. Most s ta tements are just expressions followed 
by a semicolon; since assignments are expressions, there is no need 
for a special assignment s ta tement . 

Sta tements are grouped with braces { and }, rather than with 
words like b e g i n - e n d or d o - o d , because the more concise form 
seems much easier to read and is certainly easier to type. A 
sequence of s ta tements enclosed in { } is syntactically a single state­
ment . 

The i f -e lse s tatement has the form 

if {expression) 
statement 

else 
statement 

The expression is evaluated; if it is " t r u e " (that is, if expression has a 
non-zero value) , the first s ta tement is done. If it is "false" (expres­
sion is zero) and if there is an e l s e part, the second statement is 
executed instead. The e l s e part is optional; if it is omitted in a 
sequence of nested if's, the resulting ambiguity is resolved in the 
usual way by associating the e l s e with the nearest previous e l se - less 
if. 

The swi t ch s ta tement provides a multi-way branch depending on 
the value of an integer expression: 

switch (expression) { 
c a s e const: 

code 
c a s e const: 

code 

default: 
code 

) 

The expression is evaluated and compared against the various c a s e s , 
which are labeled with distinct integer constant values. If any case 

C PROGRAMMING LANGUAGE 2001 



matches , execution begins at that point. If no case matches but 
there is a de fau l t s ta tement , execution begins there ; otherwise, no 
part of the s w i t c h is executed. 

The c a s e s are just labels, and so control may flow through one 
case to the next . Although this permits multiple labels on cases, it 
also means that in general most cases must be terminated with an 
explicit exit from the swi t ch (the b r e a k s ta tement below). 

The s w i t c h construction is part of C's legacy from BCPL; it is so 
useful and so easy to provide that the lack of a corresponding facility 
of acceptable generality in languages ranging from Fortran through 
Algol 68 , and even to Pascal (which does not provide for a d e f a u l t ) , 
must be considered a real failure of imagination in language 
designers. 

C provides three kinds of loops. The whi le is simply 

while (expression) 
statement 

The expression is evaluated; if it is t rue (non-zero) , the statement is 
executed, and then the process repeats. When expression becomes 
false (zero) , execution terminates. 

The d o s ta tement is a test-at- the-bottom loop: 

do 
statement 

while (expression); 

statement is performed once, then expression is evaluated. If it is 
t rue, the loop is repeated; otherwise it is terminated. 

The for loop is reminiscent of similarly named loops in o ther 
languages, but rather more general. The for s ta tement 

for (exprl; expr2; expr3) 
statement 

is equivalent to 

exprl; 
while (expr2) { 

statement 
expr3\ 

) 

Grammatically, the three components of a for loop are expressions. 
Any of the three parts can be omit ted, al though the semicolons 
must remain. If exprl or expr3 is left out , it is simply dropped from 
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the expansion. If the test, expr2, is not present , it is taken as per­
manently t rue, so 

for (;;) { 

} 
is an "infinite" loop, to be broken by other means , For example by 
b r e a k , below. 

The for s ta tement keeps the loop control components together 
and visible at the top of the loop, as in the idiomatic 

for (i - 0; i < N; i - 1 + 1) 

which processes the first Í e lements of an array, the analogue of the 
Fortran or PL/l DO loop. The for is more general , however. The 
test is re-evaluated on each pass through the loop, and there is no 
restriction on changing the variables involved in any of the expres­
sions in the for s tatement . The controlling variable I retains its 
value regardless of how the loop terminates. And since the com­
ponents of a for are arbitrary expressions, for loops are not 
restricted to arithmetic progressions. For example , the classic walk 
along a linked list is 

for (p - top; ń ! - NULL; ń - p - > n e x t ) 

There are two s ta tements for controlling loops. The b r e a k state­
ment , as ment ioned, causes an immediate exit from the immediately 
enclosing whi l e , for, d o or sw i t ch . The c o n t i n u e s tatement causes 
the next iteration of the immediately enclosing loop to begin, 
b r e a k and c o n t i n u e are asymmetric , since c o n t i n u e does not apply 
to sw i t ch . 

Finally, C provides the oft-maligned go to s tatement . Empirically, 
g o t o ' s are not much used, at least on our system. The operating 
system itself, for example , contains 98 in some 8300 lines. The 
PDP-11 C compiler, in 9660 lines, has 147. Essentially all of these 
implement some form of branch to the top or bot tom of a loop, or 
to error recovery code. 

IV. OPERATORS AND EXPRESSIONS 

C has been characterized as having a relatively rich set of opera­
tors. Some of these are quite conventional. For example , the basic 
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binary arithmetic operators are + , —, * and / . To these, C adds the 
modulus operator %; m%n is the remainder when m is divided by n. 

Besides the basic logical or bitwise operators & (bitwise AND ) , , and 
I (bitwise O R ) , there are also the binary operators * (bitwise 
exclusive O R ) , > > (right shift), and < < (left shift), and the 
unary operator - (ones complement ) . These operators apply to all 
integers; C provides no special bit-string type. 

The relational operators are the usual > , > = , < , < = , = = 
(equality test) , and !— (inequality test) . They have the value 1 if 
the stated relation is t rue, 0 if not. 

The unary pointer operators * (for indirection) and & (for taking 
the address) were described in Section I. When y is such as to 
make the expressions &»y or &*y legal, either is just equal to y. 
Note that & and · are used as both binary and unary operators (with 
different meanings) . 

The simplest assignment is written = , and is used conventionally: 
the value of the expression on the right is stored in the object whose 
address is on the left. In addition, most binary operators can be 
combined with assignment by writing 

a ορ·= b 

which has the effect of 

a = a op b 

except that a is only evaluated once. For example , 

÷ + - 3 

is the same as 

÷ = ÷ + 3 

if ÷ is just a variable, but 

p[i+j + 1] + = 3 

adds 3 to the e lement selected from the array p , calculating the sub­
script only once, and, more importantly, requiring it to be written 
out only once. Compound assignment operators also seem to 
correspond well to the way we think; "add 3 to x " is said, if not 
written, much more commonly than "assign x + 3 to x ." 

Assignment expressions have a value, just like other expressions, 
and may be used in larger expressions. For example , the multiple 
assignment 
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is a byproduct of this fact, not a special case. Another very com­
mon instance is the nesting of an assignment in the condition part 
of an if or a loop, as in 

while ((c - getcharO) ! - EOF) ... 

which fetches a character with the function g e t c h a r , assigns it to c , 
then tests whether the result is an end of file marker. (Parentheses 
are needed because the precedence of the assignment — is lower 
than that of the relational !-=.) 

C provides two novel operators for incrementing and decrement­
ing variables. The increment operator + + adds 1 to its operand; 
the decrement operator subtracts 1. Thus the s ta tement 

increments i. The unusual aspect is that + + and may be used 
either as prefix operators (before the variable, as in + + or 
postfix (after the variable: i + + ). In both cases, the effect is to 
increment i. But the expression + + I increments i before using its 
value, while i + + increments i after its value has been used. If i is 
5, then 

÷ - i + + ; 

sets ÷ to S, but 

÷ - + + i; 

sets ÷ to 6. In both cases, i becomes 6. 
For example , 

stackli + + l - ... 

pushes a value on a stack stored in an array s t a c k indexed by i, 
while 

... - s t a c k l - - ! ] ; 

retrieves the value and pops the stack. Of course, when the quantity 
incremented or decremented is a pointer, appropriate scaling is 
done , just as if the " 1 " were added explicitly: 

• s t a c k p + + — ... ; 
. . . - · s tackp; 
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are analogous to the previous example , this t ime using a stack 
pointer instead of an index. 

Tests may be combined with the logical connectives && ( A N D ) , | | 
(OR ) , and ! (truth value negation). The && and | | operators guaran­
tee left-to-right evaluation, with termination as soon as the truth 
value is known. For example, in the test 

if (i < - Í && array[i] > 0) ... 

if i is greater than N, then array[i] (presumably at that point an 
out-of-bounds reference) will not be accessed. This predictable 
behavior is especially convenient , and much preferable to the expli­
citly random order of evaluation promised by most other languages. 
Most C programs rely heavily on the properties of && and | | . 

Finally, the conditional expression, written with the ternary operator 
? :, provides an analogue of i f -e lse in expressions. In the expres­
sion 

el ? e2 : e3 

the expression el is evaluated first. If it is non-zero ( t rue) , then the 
expression el is evaluated, and that is the value of the conditional 
expression. Otherwise, e3 is evaluated, and that is the value. Only 
one of e2 and e3 is evaluated. Thus to set ć to the max imum of a 
and b , 

ć - (a > b) ? a : b; / · ć - max (a, b) · / 

We have already discussed how integers are scaled appropriately in 
pointer arithmetic. C does a number of other automatic conversions 
between data types, more freely than Pascal, for example, but 
without the wild abandon of PL/i. In all contexts , c h a r variables 
and constants are promoted to int. This is particularly handy in 
code like 

ç - c - Ľ ' ; 

which assigns to ç the integer value of the character stored in c , by 
subtracting the value of the character Ľ ' . Generally, in fact, the 
basic types fall into only two classes, integral and floating-point; 
c h a r variables, and the various lengths of in t ' s , are taken to be 
representations of the same kind of thing. They occupy different 
amounts of storage but are essentially compatible. Boolean values 
as such do not exist; relational or truth-value expressions have value 
1 if t rue, and 0 if false. 

Variables of type int are converted to floating-point when 
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combined with floats or d o u b l e s and in fact all floating ari thmetic is 
carried out in double precision, so floats are widened to d o u b l e in 
expressions. 

Convers ions that involve "narrowing" an expression (for exam­
ple, when a longer value is assigned to a shorter) are also well 
behaved. Floating point values are converted to integer by trunca­
tion; integers convert to shorter integers or characters by dropping 
high-order bits. 

When a conversion is desired, but is not implicit in the context , it 
is possible to force a conversion by an explicit operator called a cast. 
The expression 

(type) expression 

is a new expression whose type is that specified in type. For exam­
ple, the s in routine expects an argument of type d o u b l e ; in the 
s ta tement 

÷ - sin((double) n); 

the value of ç is converted to d o u b l e before being passed to s in . 

V. THE STRUCTURE OF C PROGRAMS 

Complete programs consist of one or more files containing func­
tion and data declarations. Thus , syntactically, a program is made 
up of a sequence of declarations; executable code appears only 
inside functions. Conventionally, the run- t ime system arranges to 
call a function named main to start execution. 

The language distinguishes the notions of declaration and 
definition. A declaration merely announces the properties of a vari­
able (like its type); a definition declares a variable and also allocates 
storage for it or, in the case of a function, supplies the code. 

5.1 Functions 

The notion of function in C includes the subrout ines and functions 
of Fortran and the procedures of most other languages. A function 
call is written 

name( arglisi) 

where the parentheses are required even if the argument list is 
empty. All functions may be used recursively. 

Arguments are passed by value, so the called function cannot in 
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any way affect the actual a rgument with which it was called. This 
permits the called program to use its formal arguments as con­
veniently initialized local variables. Call by value also eliminates the 
class of errors, familiar to Fortran programmers , in which a constant 
is passed to a subrout ine that tries to alter the corresponding argu­
ment . An array n a m e as an actual a rgument , however, is converted 
to a pointer to the first array e lement (as it always is) , so the effect 
is as if arrays were called by reference; given the pointer, the called 
function can work its will on the individual e lements of the array. 
When a function must return a value through its a rgument list, an 
explicit pointer may be passed, and the function references the ulti­
mate target through this pointer. For example , the function 
s w a p (pa, pb) interchanges two integers pointed to by its a rguments : 

swap(px, py) / · flip int's pointed to by px and py · / 
int ·ń÷, »py; 

I 
Int temp; 

temp = ·ń÷; 
•px = »py; 
•py = temp; 

) 

This also demonst ra tes the form of a function definition: the name 
is followed by an argument list; the a rguments are declared, and the 
body of the function is a block, or compound s ta tement , enclosed in 
braces. Declarations of local variables may follow the opening 
brace. 

A function returns a value by 

return expression; 

The expression is automatically coerced to the type that the function 
returns . By default, functions are assumed to re turn int; if this is 
not the case, the function must be declared both in the calling rou­
tine and when it is defined. For example, a function definition is 

double sqrt(x) / · returns square root of ÷ · / 
double x; 

I 
) 

In the caller, the declaration is 
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double y, sqr tO; 

y - sqrt(y); 

A function argument may be any of the basic types or a pointer, 
but not an array, s t ructure , union, or function. The same is t rue of 
the value returned by a function. (The most recent versions of the 
language, still not standard everywhere, permit s t ructures and 
unions as a rguments and values of functions and allow them to be 
assigned.) 

5.2 Data 

Data declared at the top level (that is, outside the body of any 
function definition) are static in lifetime, and exist throughout the 
execution of the program. Variables declared within a function body 
are by default automatic: they come into existence when the func­
tion is entered and vanish when it is exited. Automat ic variables 
may be declared to be r e g i s t e r variables; when possible they will be 
placed in machine registers, which may result in smaller, faster 
code. The r e g i s t e r declaration is only considered a hint to the com­
piler; no hardware register names are ment ioned , and the hint may 
be ignored if the compiler wishes. 

Static variables exist throughout the execution of a program, and 
retain their values across function calls. Static variables may be local 
to a function or (if defined at the top level) c o m m o n to several 
functions. 

External variables have the same lifetime as static, but they are 
also accessible to programs from other source files. That is, all 
references to an identically named external variable are references to 
the same thing. 

The "storage class" of a variable can be explicitly announced in its 
declaration: 

static int x; 
extern double y [10 ) ; 

More often the defaults for the context are sufficient. Inside a func­
tion, the default is a u t o (for automat ic) . Outside a function, at the 
top level, the default is e x t e r n . Since automatic and register vari­
ables are specific to a particular call of a particular function, they 
cannot be declared at the top level. Neither top-level variables nor 
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functions explicitly declared s t a t i c are visible to functions outside 
the file in which they appear. 

5.3 Scope 

Declarations may appear either at the top level or at the head of a 
block (compound s ta tement ) . Declarations in an inner block tem­
porarily override those of identically named variables outside. T h e 
scope of a declaration persists until the end of its block, or until the 
end of the file, if it was at the top level. 

Since function definitions may be given only at the top level (that 
is, they may not be nes ted) , there are no internal procedures. They 
have been forbidden not for any philosophical reason, but only to 
simplify the implementat ion. It has turned out that the ability to 
make certain functions and data invisible to programs in other files 
(by explicitly declaring them s t a t i c ) is sufficient to provide one of 
their most important uses, namely hiding their names from other 
functions. (However, it is not possible for one function to access 
the internal variables of another , as internal procedures could do.) 
Similarly, the ability to conceal functions and data in one file from 
access by another satisfies some of the most crucial requirements of 
modular programming (as in languages like Alphard, C L U , and 
Euclid) , even though it does not satisfy them all. 

VI. C PREPROCESSOR 

It is well recognized that "magic number s ' 1 in a program are a sign 
of bad programming. Most languages, therefore, provide a way to 
define symbolic names for constants , so that the value of a magic 
number need be specified in only one place, and the rest of the code 
can refer to the value by some mnemonic name. In C such a 
mechanism is available, but it is not part of the syntax of the 
language; instead, symbolic naming is provided by a macro prepro­
cessor automatically invoked as part of every C compilation. For 
example , given the definitions 

#define PI 3 .14159 
#define Ĺ 2 .71284 

the preprocessor replaces all occurrences of a defined name by the 
corresponding denning string. (Upper-case names are normally 
chosen to emphasize that these are not variables.) Thus , when the 
programmer recognizes that he has written an incorrect value for e, 
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only the definition line has to be changed to 

#define Ĺ 2.71828 

instead of each instance of the constant in the program. 
Providing this service by a macro processor instead of by syntax 

has some significant advantages. The replacement text is not 
restricted to being numbers ; any string of characters is permitted. 
Fur the rmore , the token being replaced need not be a variable, 
al though it must have the form of a name. For example , one can 
define 

#define forever for ( ; ; ) 

and then write infinite loops as 

forever { 

) 

The macro processor also permits macros to have arguments ; this 
capability is heavily used by some I /O packages. 

A second service of the C preprocessor is library file inclusion: a 
source line of the form 

#inc lude "name* 

causes the contents of the file n a m e to be interpolated into the 
source at that point, ( i n c l u d e s may be nested.) This feature is 
much used, especially in larger programs, for making sure that all 
the source files of the program are supplied with identical # d e f i n e s , 
global data declarations, and the like. 

VII. ENVIRONMENTAL CONSIDERATIONS 

By intent, the C language confines itself to facilities that can be 
mapped relatively efficiently and directly into machine instructions. 
For example , writing matrix operations that look exactly like scalar 
operations is possible in some programming languages and occasion­
ally misleads programmers into believing that matrix operations are 
as cheap as scalar operations. More important , restricting the 
domain of the C compiler to those areas where it knows how to do a 
relatively effective job provides the freedom to design subrout ine 
libraries for the remaining tasks without constraining them to fit into 
some language specification. When the compiler cannot implement 
some facility without heavy costs in nonportability, complexity, or 
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efficiency, there are many benefits to leaving out such a facility: it 
simplifies the language and the compiler, frequently without incon­
veniencing the user (who often rejects a high-cost built-in operation 
and does it himself anyway). 

At present , C is restricted to simple operations on simple data 
types. As a result, al though the C area of operation is comparatively 
clean and pleasant, the user must know something about the pollut­
ing effects of the env i ronment to get most jobs done. A program 
can always access the raw system calls on each system if very close 
interaction with the operating system is needed, but standard library 
rout ines have been implemented in each C env i ronment that try to 
encourage portability while retaining speed and flexibility. The basic 
areas covered by the standard library at present are storage alloca­
tion, string handling, and I /O . Additional libraries and utilities are 
available for such areas as graphics, corout ine sequencing, execution 
t ime monitor ing, and parsing. 

The only automatic storage management service provided by C 
itself is the stack discipline for automatic variables. Two subrou­
tines exist for more flexible storage handling. The function 
c a l l o c (n, s) re turns a pointer to a properly aligned storage block 
that will hold ç i tems each of which is s bytes long. Normally s is 
obtained from the sizeof pseudo-function, a compile-t ime function 
that yields the size in bytes of a variable or data type. To return a 
block obtained from c a l l o c to the free storage pool, c f r e e ( p ) may 
be called, where ń is a value re turned by a previous call to c a l l o c . 

Another set of routines deals with string handling. There is no 
"s t r ing" data type, but an array of characters, with a convent ion that 
the end of a string is indicated by a null byte, can be used for the 
same purpose. T h e most commonly used string rout ines perform 
the functions of copying one string to another , comparing two 
strings, and computing a string length. More sophisticated string 
operations can often be performed using the I /O rout ines , which are 
described next . 

Most of the rout ines in the standard library deal with input and 
output . Most C programmers use stream I /O , al though there is no 
reason why record I /O could not be used with the language. There 
are three default s t reams: the standard input , the standard output , 
and the error output . T h e most e lementary rout ines for dealing 
with these s t reams are g e t c h a r O which reads a character from the 
standard input, and p u t c h a r ( c ) , which writes the character c on the 
standard output . In the env i ronments in which C programs run , it 
is generally possibly to redirect these s t reams to files or o ther 
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programs; the program itself does not change and is unaware of the 
redirection. 

The most common output function is pr intf(format , d a t a i , 
d a t a 2 , . . . ) , which performs data conversion for formatted output . 
The string format is copied to the standard output , except that when 
a conversion specification introduced by a % character is found in 
format it is replaced by the value of the next d a t a a rgument , con­
verted according to the specification. For example , 

printfCn - %d. ÷ - %f*. n, x); 

prints ç as a decimal integer and ÷ as a floating point number , as in 

ç - 17, ÷ - 12.34 

A similar function s c a n t performs formatted input conversion. 
All the routines ment ioned have versions that operate on s treams 

other than the standard input or output , and printf and s c a n t vari­
ants may also process a string, to allow for in-memory format 
conversion. Other routines in the I /O library transmit whole lines 
between memory and files, and check for error or end-of-file status. 

Many other routines and utilities are used with C, somewhat more 
on U N I X than on other systems. As an example , it is possible to 
compile and load a C program so that when the program is run, data 
are collected on the number of t imes each function is called and 
how long it executes. This profile pinpoints the parts of a program 
that dominate the run- t ime. 

VIII. EXPERIENCE WITH C 

C compilers exist for the most widely used machines at Bell 
Laboratories ( the IBM S/370, Honeywell 6000, PDP-11) and perhaps 
10 others . Several hundred programmers within Bell Laboratories 
and many outside use C as their primary programming language. 

8.1 Favorable experiences 

C has completely displaced assembly language in U N I X programs. 
All applications code, the C compiler itself, and the operating sys­
tem (except for about 1000 lines of initial bootstrap, etc.) are writ­
ten in C. Although compilers or interpreters are available under 
U N I X for Fortran, Pascal, Algol 68, Snobol, APL, and other 
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languages, most programmers make little use of them. Since C is a 
relatively low-level language, it is adequately efficient to prevent 
people from resorting to assembler, and yet sufficienctly terse and 
expressive that its users prefer it to PL/l or other very large 
languages. 

A language that doesn ' t have everything is actually easier to pro­
gram in than some that do. The limitations of C often imply shorter 
manuals and easier training and adaptation. Language design, espe­
cially when done by a commit tee , often tends toward including all 
doubtful features, since there is no quick answer to the advocate 
who insists that the new feature will be useful to some and can be 
ignored by others. But this results in long manuals and hierarchies 
of "exper t s" who know progressively larger subsets of the language. 
In practice, if a feature is not used often enough to be familiar and 
does not complete some structure of syntax or semantics, it should 
probably be left out. Otherwise, the manual and compiler get bulky, 
the users get surprises, and it becomes harder and harder to main­
tain and use the language. It is also desirable to avoid language 
features that cannot be compiled efficiently; programmers like to 
feel that the cost of a s tatement is comparable to the difficulty in 
writing it. C has thus avoided implementing operations in the 
language that would have to be performed by subroutine call. As 
compiler technology improves, some extensions (e.g., structure 
assignment) are being made to C, but always with the same princi­
ples in mind. 

One direction for possible expansion of the language has been 
explicitly avoided. Although C is much used for writing operating 
systems and associated software, there are no facilities for mult ipro­
gramming, parallel operations, synchronization, or process control. 
We believe that making these operations primitives of the language 
is inappropriate, mostly because language design is hard enough in 
itself without incorporating into it the design of operating systems. 
Language facilities of this sort tend to make strong assumptions 
about the underlying operating system that may match very poorly 
what it actually does. 

8.2 Unfavorable experiences 

The design and implementat ion of C can (or could) be criticized 
on a number of points. Here we discuss some of the more vulner­
able aspects of the language. 
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8.2.1 Language level 

Some users complain that C is an insufficiently high-level 
language; for example, they want string data types and operations, 
or variable-size multi-dimensional arrays, or generic functions. 
Somet imes a suggested extension merely involves lifting some 
restriction. For example, allowing variable-size arrays would actually 
simplify the language specification, since it would only involve 
allowing general expressions in place of constants in certain con­
texts. 

Many other extensions are plausible; since the low level of C was 
praised in the previous section as an advantage of the language, 
most will not be further discussed. One is worthy of ment ion, how­
ever. The C language provides no facility for I /O , leaving this job 
to library routines. The following fragment illustrates one difficulty 
with this approach: 

prlntf("%d\n\ x); 

The problem arises because on machines on which int is not the 
same as long, ÷ may not be long; if it were, the program must be 
written 

printf("%D\n", x); 

so as to tell prlntf the length of x. Thus , changing the type of ÷ 
involves changing not only its declaration, but also other parts of the 
program. If I /O were built into the language, the association 
between the type of an expression and the format in which it is 
printed could be reconciled by the compiler. 

8.2.2 Type safety 

C has traditionally been permissive in checking whether an 
expression is used in a context appropriate to its type. A complete 
list of examples would be long, but two of the most important 
should illustrate sufficiently. The types of formal arguments of 
functions are in general not known, and in any case are not checked 
by the compiler against the actual arguments at each call. Thus in 
the s tatement 

s - s i n d ) ; 

the fact that the sin routine takes a floating-point argument is not 
noticed until the erroneous result is detected by the programmer. 
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In the structure reference 

p - > m e m b 

ń is simply assumed to point to a structure of which m e m b is a 
member ; ń might even be an integer and not a pointer at all. 

Much of the explanation, if not justification, for such laxity is the 
typeless nature of C's predecessor languages. Fortunately, a 
justification need no longer be at tempted, since a program is now 
available that detects all common type mismatches. This utility, 
called lint because it picks bits of fluff from programs, examines a 
set of files and complains about a great many dubious constructions, 
ranging from unused or uninitialized variables through the type 
errors ment ioned. Programs that pass unscathed through lint enjoy 
about as complete freedom from type errors as do Algol 68 pro­
grams, with a few exceptions: unions are not checked dynamically, 
and explicit escapes are available that in effect turn off checking. 

Some languages, such as Pascal and Euclid, allow the writer to 
specify that the value of a given variable may assume only a given 
subrange of the integers. This facility is often connected with the 
usage of arrays, in that any array index must be a variable or expres­
sion whose type specifies a subset of the set given by the bounds of 
the array. This approach is not without theoretical difficulties, as 
suggested by Habe rmann . 4 In itself it does not solve the problems 
of variables assuming unexpected values or of accessing outside 
array bounds; such things must (in general) be detected dynami­
cally. Still, the extra information provided by specifying the permis­
sible range for each variable provides valuable information for the 
compiler and any vérifier program. C has no corresponding facility. 

One of the characteristic features of C is its rather complete 
integration of the notion of pointer and of address arithmetic. Some 
writers, notably H o a r e , 5 have argued against the very notion of 
pointer. We feel, however, that the facilities offered by pointers are 
too valuable to give up lightly. 

8.2.3 Syntax peculiarities 

Some people are annoyed by the terseness of expression that is 
one of the characteristics of the language. We view C ' s short opera­
tors and general lack of noise as a benefit. For example, the use of 
braces { } for grouping instead of beg in and e n d seems appropriate 
in view of the frequency of the operation. The use of braces even 
fits well into ordinary mathematical notation. 
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Terseness can lead to code that is hard to read, however. For 
example , 

• + + *argv 

where a rgv has been declared c h a r *»argv (pointer into an array of 
character pointers) means: select the character pointer pointed at by 
a rgv (»argv) , increment it by one ( + + »argv) , then fetch the char­
acter that that pointer points at ( » + + »argv) . This is concise and 
efficient but reminiscent of APL. 

An example of a minor problem is the c o m m e n t convent ion, 
which is PL / l ' s / · . . . */. C o m m e n t s do not nest , so an effort to 
" c o m m e n t ou t " a section of code will fail if that section contains a 
comment . And a number of us can testify that it is surprisingly 
hard to recognize when an "end c o m m e n t " delimiter has been 
botched, so that the comment silently cont inues until the next com­
ment is reached, deleting a line or two of code. It would be more 
convenient if a single unique character were reserved to introduce a 
comment , and if comment s always terminated at an end of line. 

8.2.4 Semantic peculiarities 

There are some occasionally surprising operator precedences. For 
example , 

a > > 4 + 5 

shifts right by 9. Perhaps worse, 

(x & MASK) - - 0 

must be parenthesized to associate the proper way. Users learn 
quickly to parenthesize such doubtful cases; and when feasible lint 
warns of suspicious expressions (including both of these) . 

We have already ment ioned the fact that the c a s e actions in a 
switch flow through unless explicitly broken. In practice, users write 
so many swi t ch s ta tements that they become familiar with this 
behavior and some even prefer it. 

Some problems arise from machine differences that are reflected, 
perhaps unnecessarily, into the semantics of C. For example , the 
PDP-11 does sign extension on byte fetches, so that a character 
(viewed arithmetically) can have a value ranging from —128 to 
+ 127, rather than 0 to + 2 5 5 . Although the reference manual 
makes it quite clear that the precise range of a c h a r variable is 
machine dependent , programmers occasionally succumb to the 
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temptat ion of using the full range that their local machine can 
represent , forgetting that their programs may not work on another 
machine. The fundamental problem, of course, is that C permits 
small numbers , as well as genuine characters, to be stored in c h a r 
variables. This might not be necessary if, for example , the notion 
of subranges (ment ioned above) were introduced into the language. 

8.2.5 Miscellaneous 

C was developed and is generally used in a highly responsive 
interactive env i ronment , and accordingly the compiler provides few 
of the services usually associated with batch compilers. For exam­
ple, it prepares no listing of the source program, no cross reference 
table, and no indication of the nature of the generated code. Such 
facilities are available, but they are separate programs, not parts of 
the compiler. Programmers used to batch env i ronments may find it 
hard to live without giant listings; we would find it hard to use 
them. 

IX. CONCLUSIONS AND FUTURE DIRECTIONS 

C has continued to develop in recent years, mostly by upwardly 
compatible extensions , occasionally by restrictions against manifestly 
nonportable or illegal programs that happened to be compiled into 
something useful. The most recent major changes were motivated 
by the extension of C to other machines, and the resulting emphasis 
on portability. The advent of un ion and of casts reflects a desire to 
be more precise about types when moving to other machines is in 
prospect. These changes have had relatively little effect on program­
mers who remained entirely on the U N I X system. Of more impor­
tance was a new library, which changed the use of a "por table" 
library from an option into an effective standard, while s imultane­
ously increasing the efficiency of the library so that users would not 
object. 

It is more difficult, of course, to speculate about the future. C is 
now encounter ing more and more foreign env i ronments , and this is 
producing many demands for C to adapt itself to the hardware, and 
particularly to the operating systems, of o ther machines. Bit fields, 
for example , are a response to a request to describe externally 
imposed data layouts. Similarly, the procedures for external storage 
allocation and referencing have been made tighter to conform to 
requirements on other systems. Portability of the basic language 
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seems well handled, but interactions with operating systems grow 
ever more complex. These lead to requests for more sophisticated 
data descriptions and initializations, and even for assembler win­
dows. Fur ther changes of this sort are likely. 

What is not likely is a fundamental change in the level of the 
language. Realistically, the very acceptance of C has compelled 
changes to be made only most cautiously and compatibly. Should 
the pressure for improvements become too strong for the language 
to accommodate , C would probably have to be left as is, and a 
totally new language developed. We leave it to the reader to specu­
late on whether it should be called D or P. 
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