
It’s assembler,
Jim, but not as
we know it!
Morgan Gangwere

DEF CON 26

Hello, I’m Morgan Gangwere and this is It’s assembler, Jim, but not as we know it!
We’re going to be looking at some fun shenanigans you can have with embedded
devices running Linux (and other things)

1

Dedication
Never forget the
shoulders you stand on.

Thanks, Dad

First a shout-out to my father. He’s an awesome man who taught me the importance
of understanding tools and then making your own. This is him using a chisel with just
one hand – and a tool.

2

whoami

Hoopy Frood

Been fiddling with Linux SOCs since I
fiddled with an old TS-7200
EmbeddedARM board

I’ve used ARM for a lot of services:
IRC, web hosting, etc.

I’ve built CyanogenMod/LineageOS,
custom ARM images, etc.

So who am I?
I’m the hoopiest frood that ever did cross the galaxy, been doing Linux-y stuff since I
was a wee lad making off with one of my father’s dev kits, and I’ve built my own tools
for some time.

3

A word of note

There are few concrete examples in this talk. I’m sorry.

This sort of work is
One part science
One part estimation
Dash of bitter feelings towards others
Hint of “What the fuck was that EE thinking?”

A lot comes from experience. I can point the way, but I
cannot tell the future.

There’s a lot of seemingly random things. Trust me, It’ll
make sense.

4

ARMed to the
teeth
From the BBC to your home.

So let’s talk about ARM.

5

Short history of
ARM
Originally the Acorn RISC machine

Built for the BBC Micro!

Acorn changed hands and became
ARM Holdings

Acorn/ARM has never cut silicon!

Fun fact: Intel has produced ARM-
based chips (StrongARM and
XSCale) and still sometimes does!

The ISA hasn’t changed all that
much.

ARM, the Acorn RISC Machine, was built for the BBC Micro in 1985 by Acorn
Computer, predominantly designed by the hands of Sophie Wilson. Later, ARM was
changed to Advanced RISC machine, and later into simply ARM. The ARM ISA has
stayed the same since ARM2.. Mostly. There’s been changes to keep up with the time,
but you could read ARM assembler from the 80s and understand it today.

6

Network appliances, phones and routers have been running on top of ARM for quite a
while: It’s cheap, low power and versatile enough to do what most people want it to
do. These small linux-based ARM devices have become fixtures in our houses and in
enterprise. We’re now seeing ARM-based laptops, with ASUS’ NovaGo coming to
market and several other devices based on Qualcomm’s Snapdragon processor line
running full desktop OS’s on them and getting days of battery life.

7

The whole line of IKEA’s TRADFRI Smart LED lighting solutions run on ARM Cortex M0
chips, including the dimmers and bulbs. They go for months on a CR2032 battery.

8

Embedded
Linux 101

So let’s talk about Embedded Linux devices in general.

9

Anatomy of an Embedded
Linux device.
Fundamentally 3 parts

Storage

SoC/Processor

RAM

Everything else? Bonus.

PHYs on everything from I2C, USB to SDIO

Cameras and Screens are via MIPI-defined protocols,
CSI and DSI respectively

At one point, they all look mostly the same.

Embedded Linux devices consist of three general parts: An SoC, Storage, and RAM.
Most everything else is just a peripheral of some kind, like displays, USB devices, SDIO
and more.

10

What is an SoC?

Several major vendors:

Allwinner, Rockchip (China)

Atheros, TI, Apple (US)

Samsung (Korea)

80-100% of the peripherals and possibly storage is right
there on die

Becomes a “just add peripherals” design

Some vendors include SoCs as a part of other
devices, such as TI's line of DSPs with an ARM SoC
used for video production hardware and the like.

In some devices, there may be multiple SoCs: A whole
line of Cisco-owned Linux-based teleconferencing
hardware has big banks of SoCs from TI doing video
processing on the fly alongside a DSP.

For those not familiar, an SoC, or System on Chip, is a “Just Add Peripherals” building-
block in the design of devices. There’s an SoC in your smartphone, for instance, that
handles most of your phone’s peripherals, including radios and display adapters.
There’s a handful of major players in the field, including several in the US, China, and
Korea. SoCs are often bundled with application-specific silicon, such as a whole line of
TI DSP chips which have an ARM SoC on-die to control it, complete with Ethernet PHY
and a little bit of RAM.

11

What is an SoC?

Internal bus

Peripheral Controller

LTE modem Ethernet PHY I2C/SPI

External

Peripherals

RAM

(sometimes)

Storage

Controller

SD

Card/NAND/etc

GPU
CPU

Core(s)

All the different SoC designs look astoundingly similar, so here’s a really generic look
at it. Everything rides on an internal bus of some kind, with peripherals sitting on
some kind of controller. There’s sometimes a secondary storage controller to make
external storage such as SATA, NAND, or other storage technologies available early on
or through some kind of abstraction layer.

12

Once you’ve seen one

13

You’ve seen them all

14

They only really differ in the specific features: Here we see that this Snapdragon has
4G of LPDDR4 stacked on top, but also has 2 PCIe lanes!

15

Even Intel makes SoCs! This is a Bay Trail SoC – I suspect similar to what’s in the
MinnowBoard or something similar. As you can see, it even includes Legacy
component support, such as SMBUS!

16

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

Storage is another story entirely. The first type of storage is MTD, or Memory
Technology Device. This is NAND Flash at its core, and it gets abstracted out later by
both the bootloader and Linux itself.

17

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card

Then we have the venerable eMMC, which are a form of the now oldschool MMC, or
MultiMedia Card, specifications.

18

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

And now we have SD cards. Secure Digital has seen a few revisions of the form factor
over time, but the protocol has stayed mostly the same. SD cards are almost 1:1
compatible with MMC cards and eMMC in a legacy, 4-bit mode that was used in The
Old Days.

19

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

However, seeing an exposed SD card is rare, but is a real jackpot opportunity. For
example, the first generation Kindle uses it, but so does the Raspberry Pi.

20

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Then there’s UFS

Introduced in 2011 for
phones, cameras: High
Bandwidth storage devices

Uses a SCSI model, not
eMMC’s linear model

UFS is a new standard, somewhat common now in phones, for storing things. It’s fast
– Gigabits per second fast – and could very well become a standard for more devices
in the future. It’s also much more compatible with the classic SCSI way of looking at
disks, which makes it ideal for things like Windows.

21

Variations

Some devices have a small amount of onboard Flash for
the bootloader

Commonly seen on phones, for the purposes of
boostrapping everything else

Every vendor has different tools for pushing bits to a
device and they all suck.

Samsung has at least three for Android

Allwinner based devices can be placed into FEL boot
mode

Fastboot on Android devices

There’s some mix-and-match when it comes to storage though. There’s often at least
some baked-in flash that handles loading the bootloader, called the IPL, which is
useful for bootstrapping everything else when push comes to shove. Every vendor
has their own shitty way of cramming data onto the boot storage of the device, and
they’re all pretty bad.

22

RAM
The art of cramming a lot in a
small place

Vendors are seriously tight-
assed

Can you cram everything in
8MB? Some routers do.

The WRT54G had 8M of RAM,
later 4M

Modern SoCs tend towards
1GB, phones 4-6G

In pure flash storage, ramfs
might be used to expand on-
demand files (http content)

Let’s talk about RAM.

Sometimes, you get a lot of RAM – some phones are pushing 8 gigabytes of RAM just
to hold Android. On the other hand, the WRT54G and a whole host of newer devices
ship with 8MB of RAM. Talk about tight-assed.

23

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Now, on to peripherals. If your target application talks with these, you’re going to get
nice and cozy with wiggling electrons.

This ultimately depends on what the SoC provides, which is a function of what the
specific application needs. SPI, I2C and such are common. However, this hasn’t
stopped some astoundingly dumb choices or seemingly weird choices.

24

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Remember that Snapdragon 820? It uses a PCIe lane, a UART and PCM channel to do
WLAN and Bluetooth. Instead of cramming everything onto the PCIe lane, they chose
to make it so that Bluetooth output and input are just lines on the internal audio
codec.

25

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

So many devices are going to be weird as fuck though. GSM modems for example are
just Hayes AT modems with some extra glue.

26

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Not

GPIO!

GPIO

Sometimes, all the fancy LEDs on your device aren’t GPIO pins on the SoC. Instead,
they’re an external peripheral. This is a Nextbit Robin, where the flash LED is a part of
the camera hardware and the LEDs on the back are actually controlled by a TI LED
controller that has its own tiny ISA.

27

Bootloader

One Bootloader To Rule Them All: Das U-Boot

Uses a simple scripting language

Can pull from TFTP, HTTP, etc.

Might be over Telnet, Serial, BT UART, etc.

Some don’t use U-Boot, use Fastboot or other loaders

Android devices are a clusterfuck of options

Without the bootloader, you’d be nowhere, though. U-Boot is by far the most
common bootloader for embedded devices, with routers and the like being the most
common users. Phones and such are a whole different show, with a whole variety of
options kicking around. Chances are, however, if it’s not a phone it probably uses U-
Boot.

28

Life and death of an SoC*

DFU

Check

• First chance to load fresh code onto device, use for bootstrapping and

recovery

IPL

• Does signature checking of early boot image

• Probably SoC vendor provided

Bootloader

• Early UART/network wakeup is likely here.

Load Kernel

into RAM

• Some devices are dumb and load multiple kernels until one fails or they run out

• U-Boot is really running a script here.

Start kernel

• Kernel has to wake up (or re-wake) devices it wants. It can’t make any guarantees.

Userland

• Home of the party.

• Where the fun attacks are

* Some restrictions apply

The bootloader’s job comes right after the IPL: Its job is to wake up any devices that
haven’t been as needed such as storage, load the kernel into memory, and kick it off.
We’ve seen this dance before. This, as it turns out, is a whole lot cleaner on ARM
than it is on Intel’s clusterfuck of a design.

29

Life and death of an SoC*

DFU

Check

• First chance to load fresh code onto device, use for bootstrapping and

recovery

Early

Boot

• Does signature checking of early boot image

• Probably SoC vendor provided

U-Boot

• Early UART/network wakeup is likely here.

Load Kernel

into RAM

• Some devices are dumb and load multiple kernels until one fails or they run out

• U-Boot is really running a script here.

Start kernel

• Kernel has to wake up (or re-wake) devices it wants. It can’t make any guarantees.

Userland

• Home of the party.

• Where the fun attacks are

* Some restrictions apply

The real fun is when you can attack the earliest part of the boot sequence, the DFU or
Device Firmware Update sequence. DFU mode is how fresh code is loaded on without
any consent from the higher levels of the environment. This is also the place that
most – if not every – OEM puts the most time into: Keeping someone else from fixing
their problems becomes a steady stream of new devices. U-Boot and the userland are
the other two fun parts of this, for the obvious reasons.

30

Root Filesystem: Home to
All
A root filesystem contains the bare minimum to boot Linux: Any
shared object libraries, binaries, or other content that is necessary for
what that device is going to do

Fluid content that needs to be changed or which is going to be fetched
regularly is often stored on a Ramdisk; this might be loaded during
init's early startup from a tarball.

This is a super common thing to miss because it's a tmpfs outside of
/tmp
this is a super common way of keeping / “small”
This often leads to rootfs extractions via tar that seem "too big“

There are sometimes multiple root filesystems overlaid upon each
other

Android uses this to some extent: /system is where many things
really are

Might be from NFS, might try NFS first, etc.

A device with no code to run is a device without a purpose. We need a root
filesystem. Sometimes you get several, overlaid upon one another. Android does this
and so does your LiveCD.

31

Attacking these
devices

So how do we go about attacking these sorts of devices?

32

Step 0: Scope out your
device
Get to know what makes the device
tick

Version of Linux

Rough software stack

Known vulnerabilities

Debug shells, backdoors, admin
shells, etc.

ARM executables are fairly generic
Kobo updates are very, VERY generic

and the Kobo userland is very aware
of this.

Hardware vendors are lazy: many
devices likely similar to kin-devices

Possibly able to find update for
similar device by same OEM

Always. Always start with step 0: Get to know the device. Figure out what makes it
go. Remember that ARM executables are really generic, and this is used by many
vendors to ship the same code to different platforms. Vendors are lazy: they want to
produce the most devices with the least amount of work possible.

33

Don’t Reinvent The Wheel
Since so many embedded linux devices are similar, or run similarly
outdated software, you may well have some of your work cut out
for you

OWASP has a whole task set devoted to IoT security:

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Pr
oject

Tools like Firmwalker (https://github.com/craigz28/firmwalker) and
Routersploit (https://github.com/threat9/routersploit) are already
built and ready. Sometimes, thinking like a skid can save time and
energy for other things, like beer!

Firmware Security blog is a great place to look, including a
roundup of stuff (https://firmwaresecurity.com/2018/06/03/list-of-
iot-embedded-os-firmware-tools/)

Don’t reinvent the wheel. Tools like Firmwalker and Routersploit, as well as the
information on the OWASP IoT Security task set are meant to help streamline finding
the information you need out of filesystems, updates, etc. If these sorts of things start
really getting interesting, go read the roundups by the firmware Security blog.

34

Option 1: It’s a UNIX
system, I know this
If you can get a shell,
sometimes just beating
against your target can be fun

Limited to only what is on the
target (or what you can get to
the target)

Can feel a bit like going into
the wild with a bowie knife
and a jar full of your own piss

Debugger? Fuzzer? Compiler?
What are those?

So, Option 1 is to treat it like any other UNIX system. Straight forward if you have a
shell, you can start poking around. Often, however, you’re already going to have a
root shell or something very close to it, as well as only a handful of tools. You’re not
regularly going to get a debugger, compiler, even manpages. These devices are
stripped to the bone.

35

Option 2: Black-Box it

Lots of fun once you’re
used to it or live service
attacks.

Safe: Never directly
exposes you to “secrets”
(IP)

You don’t have the bowie
knife, just two jars of piss.

Option 2 is to black box the thing. This is turns your attack into any other
straightforward service attack where you have no control over the device itself.

IANAL, but it would seem that this has less likelihood of you stumbling upon
something vendor-secret, such as leftover binaries not pulled from the development
process. .Again, IANAL. If you think you might possibly have an inkling that you need a
lawyer, get a fucking lawyer.

36

These options suck

These options fucking suck though.

It’s always better when you can investigate the whole goddamn binary.

37

Option 3: Reverse it

Pull out IDA/Radare

Grab a beer

Learn you a new ISA

The way of reversing IoT
things that don’t run Linux!

… but how the fuck do you
get the binaries?

So the obvious answer is to reverse it. Already familiar with cracking open X86
executables in IDA? Radare? Time to learn a new ISA, grab a beer, and play the same
game but with hot fresh binaries.

If your target executable talks with an external device that you can’t emulate, this is
probably your stop.

But how the fuck do we get the binaries? We’ll get to that.

38

Yeah but I’m fucking

lazy, asshole.

I don’t want to learn

IDA. I want to fuzz.

But I’m a lazy asshole, you say: I need that sweet sweet kernel debugger and AFL and
the rest of my skid-cum-kernel-hacker tools!

39

Option 4: Emulate It

You have every tool at your
disposal

Hot damn is that a
debugger?

Oh shit waddup it’s fuzzy
boiii

Once again, how the fuck
do you get your binary of
choice?

You emulate it! Emulation is a perfectly reasonable approach to many of these
challenges. You’ve got all your normal tools in most cases, or you can at least cross-
compile them.

But the issue still stands – how the ever fuck do you get your target binary?

40

Getting root(fs)

Let’s get root, then.

This can range from surprisingly easy to frustratingly hard, depending on the
environment. Keep in mind rule 0 through this whole thing: Someone else has done
something similar, probably. A few hours of googling and reading could save you
many, many hours of head-scratching and anguished screams as you question the
lineage of the engineers who designed a device.

41

Easy Mode: Update
Packages
Updates for devices are the easiest way to extract a root filesystem

Sometimes little more than a filesystem/partition layout that
gets dd’d right to disk
Android updates are ZIPs containing some executables, a script,
and some filesystems
Newer android updates (small ones) are very regularly "delta"
updates: These touch a known filesystem directly, and are very
small but don't contain a full filesystem.

Sometimes, rarely, they're an *actual executable* that gets run on
the device

Probably isn't signed
Probably fetched over HTTP

Downside: They’re occasionally very hard to find or are
incremental, incomplete patches. Sometimes they’re encrypted.

So, easy mode is, most often, updates! Updates can be the most direct way to get the
binaries of interest, especially if there’s some new feature that’s being rolled out.
Often, these updates contain whole filesystems, but sometimes they’re executables
or binary patches against the blocks themselves. Sometimes, the bastards encrypt or
obfuscate updates.

42

Medium: In-Vivo
extraction
You need a shell

Can you hijack an administrative interface?
Some ping functions can be hijacked into shells
Sometimes it’s literally “telnet to the thing”
Refer to step 0 for more

You need some kind of packer (cpio, tar, etc)
Find is a builtin for most busybox implementations.

You need some way to put it somewhere (netcat, curl, etc)

You might have an HTTPD to fall back on

Need to do reconnaissance on your device

Might need some creativity
Wireshark, Ettercap, Fiddler, etc

Next up is the Fuck it, we’re doing it live of getting files off a device. This will require a
certain amount of creativity on your part as you’re living in a very barebones
envinonment. Take the easiest way out possible.

43

Demo: Router firmware
extraction (Actiontec
Router)

So let’s see what this looks like.

44

45

What did we get?

Hot damn, those look like filesystems.

46

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

Next up is direct, complete extraction at the raw block level outside of the native
environment. This could be as simple as pulling the SD card out and dumping that

47

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

And you’re looking at me like “okay asshole, tell me something I don’t know”.

48

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

But the number of devices that have these is astoundingly large. These are all
devices, a game console, an “anonymity device” a first generation Kindle and a Kobo
H2O. Many of these devices are just a Raspberry Pi with some added hardware on
top.

49

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

eMMC devices make things harder though. eMMC is really similar to SD in that they
share a common ancestor, there’s a few divergences that have been made to make
the phone manufacturing industry happy.

50

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

More eMMC modules now are actually eMCP modules, where you have the eMMC
module stacked in silicon alongside LPDDR.

51

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

eMMC readers are readily available. They come in all shapes and sizes and even have
USB versions. eMMC cards still talk the same protocol that MMC cards talk, and are
thus compatible with SD cards!

52

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

http://blog.oshpark.com/2017/02/23/retro-cpc-dongle/

This also means you can be like this crazy bastard and make your own SD card
adapters for eMMC devices.

53

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

eMMC devices are also more common in industrial applications, as their lack of a
physical interconnect means they can be potted and conformal coated. They survive
higher temperatures, more reads and writes than your typical consumer SD card, and
are generally meant for more abuse.

These devices here are just two examples of Raspberry Pi clones – compatible ones,
even – which are built around eMMC devices.

54

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the data lines,
but it can be done!

You will need to understand how the disk is laid out
Binwalk can help later, as can “standard” DOS partition tables.

Having some in-vivo information is helpful

All Else Fails: Solder to the rescue
Might need to desolder some storage, or otherwise physically
attack the hardware
MTD devices are weird. Prepare to get your hands dirty
Interested in more? HHV and friends are the place to start
looking.
JTAG, etc. might be the hard way out.

In the end, you may have to go out of your way and start sniffing around the device to
try and find what’s going on. Your device might need a whole bunch of fun.

If you think this could be you, It’s time to go to the Hardware Hacking Village and
learn you a Thing. Hardware is a whole different special chunk of fun that we won’t
get into because that rabbit hole is deeper than some young men at a street fair in
late September.

55

Logic
Analyzers
Salae makes a good one

Cheap

Basic

Runs over USB

It might be time to get a logic analyzer. There’s plenty of cheaper, USB based ones
that are more than capable .

56

Hardware interfaces

https://www.crowdsupply.com/excamera/spidriverhttp://dangerousprototypes.com/docs/Bus_Pirate

Devices like the Bus Pirate and SPIDriver are convenient hardware bridges for the
wide, wide world of hardware peripherals that let you bridge the gap. Sure, laptops
have SPI and I2C but they’re not easily accessible as a platform. These sorts of
devices are amazing ways for you to mumble with hardware.

57

Now that we have that,
what do?
Try mounting it/extracting it/etc. `file` might give you a
good idea of what it thinks it might be, as will `strings`
and the like.

eMMCs sometimes have real partition tables

SD cards often do

Look at the reconnaissance you did

Boot logs: lots of good information about partitions

Fstab, /proc/mounts

So now we have the root filesystem, or a dump. It’s time to start digging around.

58

Let automation do your
work
Binwalk!

Takes a rough guess at what might be in a place
Makes educated guesses about filesystems
High false positive rate

Photorec might be helpful

Get creative
Losetup and friends are capable of more than you give them
credit for.
There are a lot of filesystems that are read-only or create-and-
read, like cramfs and such. These are often spotted by binwalk
but are even sometimes seen as lzma or other compressed or
high-entropy data

If you’re only looking to play in IDA/Radare/etc, the bulk extraction
from binwalk might help.

The biggest thing that you should get in the habit of is finding automation tools that
work for your use case. Binwalk is the classic tool for this. It makes rough, educated
guesses and spits out more guesses. It has a fairly high false positive rate, but a fairly
low false negative rate, which makes it fairly useful in finding what could be hiding
under there, so long as you can dig through the dirt.

Tools like Photorec, losetup, etc. are sometimes useful in their own right: These sorts
of tools have a little bit of smarts baked in that can be really helpful. There are
compressed filsystems that binwalk will ignore that other tools will totally be happy
to consume. Your worst case is that a tool makes your working directory a bit of a
mess.

59

QEMU: the
Quick
EMUlator
QEMU is a fast processor
emulator for a variety of
targets.

Targets you’ve never
heard of?

Mainframes

ARM, MIPS

PowerPC

OpenRISC

DEC Alpha

Lots of different ports and
targets have been ported.

However, this brings us to one amazing chunk of automation: QEMU. QEMU is a fast
emulator for a variety of different platforms, letting you do stupid shit like

60

Did
someone
say “OSX on
Amiga
hardware”?

Run Mac OSX 10.4 on an Amiga

61

Or Haiku
on BeOS?

Or run Haiku on BeOS.

Or, alternately, more practical things.

62

Two ways to run QEMU

AS A FULL FAT VM

You preserve full control over the
whole process

You’ve got access to things like gdb at
a kernel level

Requires zero trust in the safety of the
binary

But you probably want a special
kernel and board setup, though there
are generic setups to get you started

Any tools are going to need to be
compiled for the target environment

I hate cross-compilers.

AS A TRANSLATING LOADER

You have access to all your existing
x86-64 tools (or whatever your native
tools are)

They’re not only native, but they’re
running full-speed.

You can run AFL like it’s meant to

Runs nicely in containers

You don’t even need a container!

QEMU has two general modes: A full-fat VM, like we just saw, or as a translating
loader in Linux. Your device turned out to be X86 but you’re a paranoid person and
don’t feel like letting it touch the real hardware directly? Full fat VM. Hell, even
PowerPC can get in on the game. As a loader, it makes those weird executables from
that hot new device look like any other executable.

63

Full-Fat VM: 9 tracks of
DOS

Here we see QEMU running as a full VM, running MSDOS 6.22 and interfacing with
real hardware, a gigantic Overland Data 9 track tape drive. I used this to dump Data
General AOS boot and install tapes.

64

Binfmt: Linux’ way of
loading executables
Long ago, Linux added loadable loaders

Originally for the purposes of running JARs from the
command line like God and Sun Microsystems intended.

Turns out this is a great place to put emulators.

Debian ships with support for this in its binfmt-misc package.

QEMU can be shipped as a “static userspace” environment
(think WINE)

Uses “magic numbers” – signatures from a database – to
determine which ones are supposed to load what.

Fairly simple to add new kinds of binaries. You could actually
execute JPEGs if you really wanted to?

So let’s talk about Linux’s loader. Ever wondered why you can call Mono and WINE
executables directly from the command line? Simple, it’s the loader framework.
Originally so that you could call JARs directly, it’s now fairly trivial to add new kinds of
“executables” to Linux.

65

QEMU as loader

WITHOUT A CONTAINER

Dumb simple to set up:
qemu-whatever-static <binary>

With binfmt, just call your binary.

Must trust that the executable
is not malicious

Might depend on your local
environment looking like its
target environment

This works best for static,
monolithic executables

WITH A CONTAINER

Bring that whole root filesystem
along!

Run it in the confines of a jail,
Docker instance, even
something like Systemd
containers

Might need root depending on
your container (systemd)

Great for when your binary
loads its own special versions of
libraries that have weird things
added to them

As a loader, it comes down to two options: With or without containers. Without a
container, you’re going in raw with no protection. If that executable decides to do
something terrible to you, it’s totally going to do it. On the other hand, containers are
a totally reasonable option. Using containers means that you have some amount of
wall around a possibly malicious application, or something that needs weird library
setups. As long as Linux can call the loader, it’s all fine.

66

To give you context on what you’re going to see next, this is the hardware most
software expects. Not a laptop running a VM running QEMU.

67

QEMU user Demo

Here we see QEMU running S390x executables from Alpine Linux, doing a full boot,
then just running a shell from the ArmArch64

68

AFL setup

Oh boy. Let’s talk about AFL.

AFL needs to compiled with QEMU support

Magic sauce: CPU_TARGET=whatever
./build_qemu_support.sh

AFL needs to bring along the host’s libraries

Easiest bound with systemd-nspawn

Don’t do this in a VM

It hurts

In my outline, I promised a demo of AFL.

AFL needs a bunch of setup. I had to compile AFL under Debian, pull over a bunch of
libraries from the local side, then pass in some environment arguments. Why am I
going to these great lengths? I’m running it into the container that all the s390x
executable lives in, which is under Alpine’s version of musl libc.

69

AFL Demo

70

Wrapping up

What did we learn today?
Hardware vendors are lazy
Attacking hardware means getting creative
QEMU is pretty neato
AFL runs really slow when you’re emulating an X86
emulating an IBM mainframe.

Going forward:
I hope I’ve given you some idea of the landscape of
tools
Always remember rule 0

71

More Resources

Non-Linux targets:

RECON 2010 with Igor Skochinsky: Reverse Engineering for
PC Reversers:
http://hexblog.com/files/recon%202010%20Skochinsky.pdf

JTAG Explained: https://blog.senr.io/blog/jtag-explained

https://www.blackhat.com/presentations/bh-europe-
04/bh-eu-04-dehaas/bh-eu-04-dehaas.pdf

https://beckus.github.io/qemu_stm32/ (among others)

Linux targets:

eLinux.org – Fucking Gigantic wiki about embedded Linux.

linux-mips.org – Linux on MIPS

72

Thank you
Keep on hacking.

73

