
It’s assembler,
Jim, but not as
we know it!
Morgan Gangwere

DEF CON 26

Dedication
Never forget the
shoulders you stand on.

Thanks, Dad

whoami

Hoopy Frood

Been fiddling with Linux SOCs since I
fiddled with an old TS-7200
EmbeddedARM board

I’ve used ARM for a lot of services:
IRC, web hosting, etc.

I’ve built CyanogenMod/LineageOS,
custom ARM images, etc.

A word of note

There are few concrete examples in this talk. I’m sorry.

This sort of work is
One part science
One part estimation
Dash of bitter feelings towards others
Hint of “What the fuck was that EE thinking?”

A lot comes from experience. I can point the way, but I
cannot tell the future.

There’s a lot of seemingly random things. Trust me, It’ll
make sense.

ARMed to the
teeth
From the BBC to your home.

Short history of
ARM
Originally the Acorn RISC machine

Built for the BBC Micro!

Acorn changed hands and became
ARM Holdings

Acorn/ARM has never cut silicon!

Fun fact: Intel has produced ARM-
based chips (StrongARM and
XSCale) and still sometimes does!

The ISA hasn’t changed all that
much.

Embedded
Linux 101

Anatomy of an Embedded
Linux device.
Fundamentally 3 parts

Storage

SoC/Processor

RAM

Everything else? Bonus.

PHYs on everything from I2C, USB to SDIO

Cameras and Screens are via MIPI-defined protocols,
CSI and DSI respectively

At one point, they all look mostly the same.

What is an SoC?

Several major vendors:

Allwinner, Rockchip (China)

Atheros, TI, Apple (US)

Samsung (Korea)

80-100% of the peripherals and possibly storage is right
there on die

Becomes a “just add peripherals” design

Some vendors include SoCs as a part of other
devices, such as TI's line of DSPs with an ARM SoC
used for video production hardware and the like.

In some devices, there may be multiple SoCs: A whole
line of Cisco-owned Linux-based teleconferencing
hardware has big banks of SoCs from TI doing video
processing on the fly alongside a DSP.

What is an SoC?

Internal bus

Peripheral Controller

LTE modem Ethernet PHY I2C/SPI

External

Peripherals

RAM

(sometimes)

Storage

Controller

SD

Card/NAND/etc

GPU
CPU

Core(s)

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Then there’s UFS

Introduced in 2011 for
phones, cameras: High
Bandwidth storage devices

Uses a SCSI model, not
eMMC’s linear model

Variations

Some devices have a small amount of onboard Flash for
the bootloader

Commonly seen on phones, for the purposes of
boostrapping everything else

Every vendor has different tools for pushing bits to a
device and they all suck.

Samsung has at least three for Android

Allwinner based devices can be placed into FEL boot
mode

Fastboot on Android devices

RAM
The art of cramming a lot in a
small place

Vendors are seriously tight-
assed

Can you cram everything in
8MB? Some routers do.

The WRT54G had 8M of RAM,
later 4M

Modern SoCs tend towards
1GB, phones 4-6G

In pure flash storage, ramfs
might be used to expand on-
demand files (http content)

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Peripherals
Depends on what the hardware has: SPI, I2C, I2S, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over I2S
GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.
“We need an Ethernet PHY” becomes “We hooked an
Ethernet PHY up over USB”

Linux doesn’t care if they’re on-die or not, it’s all the same
bus.

Not

GPIO!

GPIO

Bootloader

One Bootloader To Rule Them All: Das U-Boot

Uses a simple scripting language

Can pull from TFTP, HTTP, etc.

Might be over Telnet, Serial, BT UART, etc.

Some don’t use U-Boot, use Fastboot or other loaders

Android devices are a clusterfuck of options

Life and death of an SoC*

DFU

Check

• First chance to load fresh code onto device, use for bootstrapping and

recovery

IPL

• Does signature checking of early boot image

• Probably SoC vendor provided

Bootloader

• Early UART/network wakeup is likely here.

Load Kernel

into RAM

• Some devices are dumb and load multiple kernels until one fails or they run out

• U-Boot is really running a script here.

Start kernel

• Kernel has to wake up (or re-wake) devices it wants. It can’t make any guarantees.

Userland

• Home of the party.

• Where the fun attacks are

* Some restrictions apply

Life and death of an SoC*

DFU

Check

• First chance to load fresh code onto device, use for bootstrapping and

recovery

Early

Boot

• Does signature checking of early boot image

• Probably SoC vendor provided

U-Boot

• Early UART/network wakeup is likely here.

Load Kernel

into RAM

• Some devices are dumb and load multiple kernels until one fails or they run out

• U-Boot is really running a script here.

Start kernel

• Kernel has to wake up (or re-wake) devices it wants. It can’t make any guarantees.

Userland

• Home of the party.

• Where the fun attacks are

* Some restrictions apply

Root Filesystem: Home to
All
A root filesystem contains the bare minimum to boot Linux: Any
shared object libraries, binaries, or other content that is necessary for
what that device is going to do

Fluid content that needs to be changed or which is going to be fetched
regularly is often stored on a Ramdisk; this might be loaded during
init's early startup from a tarball.

This is a super common thing to miss because it's a tmpfs outside of
/tmp
this is a super common way of keeping / “small”
This often leads to rootfs extractions via tar that seem "too big“

There are sometimes multiple root filesystems overlaid upon each
other

Android uses this to some extent: /system is where many things
really are

Might be from NFS, might try NFS first, etc.

Attacking these
devices

Step 0: Scope out your
device
Get to know what makes the device
tick

Version of Linux

Rough software stack

Known vulnerabilities

Debug shells, backdoors, admin
shells, etc.

ARM executables are fairly generic
Kobo updates are very, VERY generic

and the Kobo userland is very aware
of this.

Hardware vendors are lazy: many
devices likely similar to kin-devices

Possibly able to find update for
similar device by same OEM

Don’t Reinvent The Wheel
Since so many embedded linux devices are similar, or run similarly
outdated software, you may well have some of your work cut out
for you

OWASP has a whole task set devoted to IoT security:

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Pr
oject

Tools like Firmwalker (https://github.com/craigz28/firmwalker) and
Routersploit (https://github.com/threat9/routersploit) are already
built and ready. Sometimes, thinking like a skid can save time and
energy for other things, like beer!

Firmware Security blog is a great place to look, including a
roundup of stuff (https://firmwaresecurity.com/2018/06/03/list-of-
iot-embedded-os-firmware-tools/)

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://github.com/craigz28/firmwalker
https://github.com/threat9/routersploit
https://firmwaresecurity.com/2018/06/03/list-of-iot-embedded-os-firmware-tools/

Option 1: It’s a UNIX
system, I know this
If you can get a shell,
sometimes just beating
against your target can be fun

Limited to only what is on the
target (or what you can get to
the target)

Can feel a bit like going into
the wild with a bowie knife
and a jar full of your own piss

Debugger? Fuzzer? Compiler?
What are those?

Option 2: Black-Box it

Lots of fun once you’re
used to it or live service
attacks.

Safe: Never directly
exposes you to “secrets”
(IP)

You don’t have the bowie
knife, just two jars of piss.

These options suck

Option 3: Reverse it

Pull out IDA/Radare

Grab a beer

Learn you a new ISA

The way of reversing IoT
things that don’t run Linux!

… but how the fuck do you
get the binaries?

Yeah but I’m fucking

lazy, asshole.

I don’t want to learn

IDA. I want to fuzz.

Option 4: Emulate It

You have every tool at your
disposal

Hot damn is that a
debugger?

Oh shit waddup it’s fuzzy
boiii

Once again, how the fuck
do you get your binary of
choice?

Getting root(fs)

Easy Mode: Update
Packages
Updates for devices are the easiest way to extract a root filesystem

Sometimes little more than a filesystem/partition layout that
gets dd’d right to disk
Android updates are ZIPs containing some executables, a script,
and some filesystems
Newer android updates (small ones) are very regularly "delta"
updates: These touch a known filesystem directly, and are very
small but don't contain a full filesystem.

Sometimes, rarely, they're an *actual executable* that gets run on
the device

Probably isn't signed
Probably fetched over HTTP

Downside: They’re occasionally very hard to find or are
incremental, incomplete patches. Sometimes they’re encrypted.

Medium: In-Vivo
extraction
You need a shell

Can you hijack an administrative interface?
Some ping functions can be hijacked into shells
Sometimes it’s literally “telnet to the thing”
Refer to step 0 for more

You need some kind of packer (cpio, tar, etc)
Find is a builtin for most busybox implementations.

You need some way to put it somewhere (netcat, curl, etc)

You might have an HTTPD to fall back on

Need to do reconnaissance on your device

Might need some creativity
Wireshark, Ettercap, Fiddler, etc

Demo: Router firmware
extraction (Actiontec
Router)

What did we get?

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

http://blog.oshpark.com/2017/02/23/retro-cpc-dongle/

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

Surprise Mode: Direct
Extraction
Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the data lines,
but it can be done!

You will need to understand how the disk is laid out
Binwalk can help later, as can “standard” DOS partition tables.

Having some in-vivo information is helpful

All Else Fails: Solder to the rescue
Might need to desolder some storage, or otherwise physically
attack the hardware
MTD devices are weird. Prepare to get your hands dirty
Interested in more? HHV and friends are the place to start
looking.
JTAG, etc. might be the hard way out.

Logic
Analyzers
Salae makes a good one

Cheap

Basic

Runs over USB

Hardware interfaces

https://www.crowdsupply.com/excamera/spidriverhttp://dangerousprototypes.com/docs/Bus_Pirate

Now that we have that,
what do?
Try mounting it/extracting it/etc. `file` might give you a
good idea of what it thinks it might be, as will `strings`
and the like.

eMMCs sometimes have real partition tables

SD cards often do

Look at the reconnaissance you did

Boot logs: lots of good information about partitions

Fstab, /proc/mounts

Let automation do your
work
Binwalk!

Takes a rough guess at what might be in a place
Makes educated guesses about filesystems
High false positive rate

Photorec might be helpful

Get creative
Losetup and friends are capable of more than you give them
credit for.
There are a lot of filesystems that are read-only or create-and-
read, like cramfs and such. These are often spotted by binwalk
but are even sometimes seen as lzma or other compressed or
high-entropy data

If you’re only looking to play in IDA/Radare/etc, the bulk extraction
from binwalk might help.

QEMU: the
Quick
EMUlator
QEMU is a fast processor
emulator for a variety of
targets.

Targets you’ve never
heard of?

Mainframes

ARM, MIPS

PowerPC

OpenRISC

DEC Alpha

Lots of different ports and
targets have been ported.

Did
someone
say “OSX on
Amiga
hardware”?

Or Haiku
on BeOS?

Two ways to run QEMU

AS A FULL FAT VM

You preserve full control over the
whole process

You’ve got access to things like gdb at
a kernel level

Requires zero trust in the safety of the
binary

But you probably want a special
kernel and board setup, though there
are generic setups to get you started

Any tools are going to need to be
compiled for the target environment

I hate cross-compilers.

AS A TRANSLATING LOADER

You have access to all your existing
x86-64 tools (or whatever your native
tools are)

They’re not only native, but they’re
running full-speed.

You can run AFL like it’s meant to

Runs nicely in containers

You don’t even need a container!

Full-Fat VM: 9 tracks of
DOS

Binfmt: Linux’ way of
loading executables
Long ago, Linux added loadable loaders

Originally for the purposes of running JARs from the
command line like God and Sun Microsystems intended.

Turns out this is a great place to put emulators.

Debian ships with support for this in its binfmt-misc package.

QEMU can be shipped as a “static userspace” environment
(think WINE)

Uses “magic numbers” – signatures from a database – to
determine which ones are supposed to load what.

Fairly simple to add new kinds of binaries. You could actually
execute JPEGs if you really wanted to?

QEMU as loader

WITHOUT A CONTAINER

Dumb simple to set up:
qemu-whatever-static <binary>

With binfmt, just call your binary.

Must trust that the executable
is not malicious

Might depend on your local
environment looking like its
target environment

This works best for static,
monolithic executables

WITH A CONTAINER

Bring that whole root filesystem
along!

Run it in the confines of a jail,
Docker instance, even
something like Systemd
containers

Might need root depending on
your container (systemd)

Great for when your binary
loads its own special versions of
libraries that have weird things
added to them

QEMU user Demo

AFL setup

Oh boy. Let’s talk about AFL.

AFL needs to compiled with QEMU support

Magic sauce: CPU_TARGET=whatever
./build_qemu_support.sh

AFL needs to bring along the host’s libraries

Easiest bound with systemd-nspawn

Don’t do this in a VM

It hurts

AFL Demo

Wrapping up

What did we learn today?
Hardware vendors are lazy
Attacking hardware means getting creative
QEMU is pretty neato
AFL runs really slow when you’re emulating an X86
emulating an IBM mainframe.

Going forward:
I hope I’ve given you some idea of the landscape of
tools
Always remember rule 0

More Resources

Non-Linux targets:

RECON 2010 with Igor Skochinsky: Reverse Engineering for
PC Reversers:
http://hexblog.com/files/recon%202010%20Skochinsky.pdf

JTAG Explained: https://blog.senr.io/blog/jtag-explained

https://www.blackhat.com/presentations/bh-europe-
04/bh-eu-04-dehaas/bh-eu-04-dehaas.pdf

https://beckus.github.io/qemu_stm32/ (among others)

Linux targets:

eLinux.org – Fucking Gigantic wiki about embedded Linux.

linux-mips.org – Linux on MIPS

http://hexblog.com/files/recon 2010 Skochinsky.pdf
https://blog.senr.io/blog/jtag-explained
https://www.blackhat.com/presentations/bh-europe-04/bh-eu-04-dehaas/bh-eu-04-dehaas.pdf
https://beckus.github.io/qemu_stm32/

Thank you
Keep on hacking.

