It's assembler,
Jim, but not as
we know it!

Morgan Gangwere
DEF CON 26

Dedication

Never forget the
shoulders you stand on.

Thanks, Dad

whoami

Hoopy Frood

Been fiddling with Linux SOCs since |
fiddled with an old TS-7200
EmbeddedARM board

I've used ARM for a lot of services:
IRC, web hosting, etc.

I've built CyanogenMod/LineageOS,
custom ARM images, etc.

A word of note

There are few concrete examples in this talk. I'm sorry.

This sort of work is
One part science
One part estimation
Dash of bitter feelings towards others
Hint of “What the fuck was that EE thinking?”

A lot comes from experience. | can point the way, but |
cannot tell the future.

There’s a lot of seemingly random things. Trust me, It'll
make sense.

ARMed to the
teeth

From the BBC to your home.

Short history of
ARM

Originally the Acorn RISC machine
Built for the BBC Micro!

Acorn changed hands and became
ARM Holdings

Acorn/ARM has never cut silicon!

Fun fact: Intel has produced ARM-
based chips (StrongARM and
XSCale) and still sometimes does!

The ISA hasn’t changed a// that
much.

a Q.l

N &
M
=

EEmESry 0|)
PLTERS W
— - |
__—’—— 41
,...

, | ¢

13-

- L | 1] |
T T T I I T T ST AT TaT
e e

»

SYST

— "
01

N

g

- =
-
=

TAYAS
AVAS

w -

Al
702

| WIRELESS CenturyLink”

NTERNET Lb—— ETHERNET

st

Embedded
Linux 101

Anatomy of an Embedded
Linux device.

Fundamentally 3 parts
Storage
SoC/Processor
RAM

Everything else? Bonus.
PHYs on everything from 12C, USB to SDIO

Cameras and Screens are via MIPI-defined protocols,
CSI and DSI respectively

At one point, they all /ook mostly the same.

What is an So(C?

Several major vendors:
Allwinner, Rockchip (China)
Atheros, TI, Apple (US)
Samsung (Korea)

eoms
L

lere
vi. |

80-100% of the peripherals and possibly storage is right
there on die

<
z
x
(4]
=
?
~
&
@
-
°

oRbpEkEEE

r*anc’e :

Becomes a “just add peripherals” design

Some vendors include SoCs as a part of other
devices, such as Tl's line of DSPs with an ARM SoC
used for video production hardware and the like.

In some devices, there may be multiple SoCs: A whole
line of Cisco-owned Linux-based teleconfer,encmg
hardware has big banks of SoCs from Tl doing video

processing on the fly alongside a DSP. Wii:i module

Rarsiver)

What is an So(C?

External

Peripherals

RAM SD
LTE modem Ethernet PHY 12C/SPI oG i Card/NAND/etc

Storage
Controller

Peripheral Controller

Internal bus

Allwinner
- Technology

3. BLOCK DIAGRAM

Figure 3-1 shows the block diagram of the R8.

Blode Diegram

AUDID ADC SO0/ MM

GrU
GPio Mali 400

HANDY sMMC
FLAZH

Video Engine
|H.264,H.263,
MPEGL 274, VP68,
AVE]

LD Display
ETaudh

0o,

Figure 3-1. R8 Block Diagram

Ethernet

~

Topbo '_mnu
ALK \—Cmul

24mhz NAND DDR
Crystal FLASH DRAM

A20 SOC

ARM Dual Cortex A7 Core
&

Mali-400 MP2 2D/3D GPU

Card
Slots 0-3

L 3040 Casa | SO0 Cord
£ Cootrofler @ | Contesler 1

SO0 Card | SDIO Covz

" Costrcler 2 | Cartrothar 3

2G|

LCD Display
wiTouch

HD Video

LVDS
i Display

Display

=
. s~ o
- el
| g 0Pt — 8 & CATV
1 L.
Power
Management

Snapdragon 820 - APQ8096 SOM Block Diagram

Rev0.7

Input Supply
From Carrier
| f— (3 5\ e—
W.S,Nﬁ
eMMC 5.1 X.FL
s o WLAN 80z.41a¢ [P o cor
Uks BT41 XFL
Memory QCAS174A [P Coamsior
(32G8B)
e———————2x MIP1 DSI (4-Lane! SAW Filter
¢ g |gp— XFL
- 157SMEUBAS Commector
3x MIPI CSI (8-Lane)
1/2x SOC
R UL E L S —
2x 125- >
1 USB 2.
2x PCWH >
- 1x MIPI SUMbus >

to Audio Codec

Bay Irail SOC Block Diagram

Silvermont Silvermont Silvermont
Core Core Core

Shared 1M L2$ Shared 1M L2$

Primary Switching Fabric
A

GPIO + Legacy

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded
MultiMedia Card

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions
eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions
eMMC: Embedded
MultiMedia Card, SPI SD card

SD cards

Storage

Two/Three common flavors

MTD (Memory Technology
Device): Abstraction of flash
pages to partitions

eMMC: Embedded SAMSUNG SAMSUNG
MultiMedia Card, SPI SD card 2 /-

SD cards
SAMSUNG SAMSUNG

Then there’s UFS 1287 | e

Introduced in 2011 for |
phones, cameras: High
Bandwidth storage devices

Uses a SCSI model, not
eMMC'’s linear model

Variations

Some devices have a small amount of onboard Flash for
the bootloader

Commonly seen on phones, for the purposes of
boostrapping everything else
Every vendor has different tools for pushing bits to a
device and they all suck.
Samsung has at least three for Android

Allwinner based devices can be placed into FEL boot
mode

Fastboot on Android devices

RAM

The art of cramming a lotin a
small place

Vendors are seriously tight-
assed

Can you cram everything in
8MB? Some routers do.

The WRT54G had 8M of RAM,
later 4M

Modern SoCs tend towards
1GB, phones 4-6G

In pure flash storage, ramfs
might be used to expand on-
demand files (http content)

My RAM: *Exists”
Chrome:

Peripherals

Depends on what the hardware has: SPI, 12C, 125, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over 12S

GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.

“We need an Ethernet PHY" becomes “We hooked an
Ethernet PHY up over USB”

lI:_)inux doesn’t care if they're on-die or not, it's all the same
us.

Peripherals

C
C

SAW Filter
15TSMSUBAS

il

tHhecrw

Peripherals

Depends on what the hardware has: SPI, 12C, 125, etc are
common sights.

Gonna see some weird shit
SDIO wireless cards
“sound cards” over 12S

GSM modems are really just pretending to be Hayes AT
modems.
Power management, LED management, cameras, etc.

“We need an Ethernet PHY" becomes “We hooked an
Ethernet PHY up over USB”

lI:_)inux doesn’t care if they're on-die or not, it's all the same
us.

Perip

Depends o tc are
common Ssi
Gonna see
SDIO wir
“sound c:
GSM mo iyes AT
modems.
Power m: , etc.
“We neec d an
Ethernet |
Linux does| 1e same

bus.

Bootloader

One Bootloader To Rule Them All: Das U-Boot
Uses a simple scripting language
Can pull from TFTP, HTTP, etc.
Might be over Telnet, Serial, BT UART, etc.

Some don’t use U-Boot, use Fastboot or other loaders
Android devices are a clusterfuck of options

Life and death of an SoC*

* Some restrictions apply
« First chance to load fresh code onto device, use for bootstrapping and |

@ recovery)

« Does signature checking of early boot image
« Probably SoC vendor provided

« Early UART/network wakeup is likely here.

Bootloader

« Some devices are dumb and load multiple kernels until one fails or they run out
swewedl « U-Boot is really running a script here.

« Kernel has to wake up (or re-wake) devices it wants. It can’t make any guarantees.

s :

« Home of the party.
» Where the fun attacks are

Life and death of an SoC*

* Some restrictions apply

First chance to load fresh code onto device, use for bootstrapping and
recovery

Load Kernel
into RAM

e of the party.
here the fun attacks are

Root Filesystem: Home to
All

A root filesystem contains the bare minimum to boot Linux: Any
shared objéct libraries, binaries, or other content that is necessary for
what that'device is going to do

Fluid content that needs to be changed or which is going to be fetched
regularly is often stored on a Ramdisk; this might bé loaded during
init's early startup from a tarball.

/'!c'his is a super common thing to miss because it's a tmpfs outside of
mp

this is a super common way of keeping / “small”

This often leads to rootfs extractions via tar that seem "too big”
T[[\ﬁre are sometimes multiple root filesystems overlaid upon each
other

Android uses this to some extent: /system is where many things

really are

Might be from NFS, might try NFS first, etc.

Attacking these
devices

Step 0: Scope out your
device

%Sel’g to know what makes the device
Te

Version of Linux
Rough software stack
Known vulnerabilities

Debug shells, backdoors, admin
shells, etc.

ARM executables are fairly generic

Kobo updates are very, VERY generic
ar}?hthe Kobo userland'is very aware
of this.

gardwaEekvlendorsI ar$ Iakzy anany Tk " :
evices likely similar in-deviCes
P055|bl able to find update for W E A K P O I N T

similar device by same OEM Hit it for massive damage.

Don’t Reinvent The Wheel

Since so many embedded linux devices are similar, or run similarly

?utdated software, you may well have some of your work cut out
or you

OWASP has a whole task set devoted to loT security:

https://www.owasp.org/index.php/OWASP Internet of Things Pr
oject

Tools like Firmwalker (https://github.com/craigz28/firmwalker) and
Routersploit (https://github.com/threat9/routersploit) are already

built and ready. Sometimes, thinking like a skid can save t/ime and

energy for other things, like beer!

Firmware Security blog is a great place to look, includin

a
roundup of stuff (https://firmwaresecurity.com/2018/06?03/Iist-of-
iot-embedded-os-firmware-tools/)

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project
https://github.com/craigz28/firmwalker
https://github.com/threat9/routersploit
https://firmwaresecurity.com/2018/06/03/list-of-iot-embedded-os-firmware-tools/

Option 1: It's a UNIX
system, | know this

If you can get a shell,
sometimes just beating
against your target can be fun

Limited to only what is on the

target (or what you can get to ' ’ -
the target) | § It's a UNIX
Can feel a bit like going into ' system!
the wild with a bowie knife 1 know this!

and a jar full of your own piss

Debugger? Fuzzer? Compiler?
What are those?

Option 2: Black-Box it

Lots of fun once you're
used to it or live service
attacks.

Safe: Never directly
exposes you to “secrets”

(IP)

You don’t have the bowie
knife, just two jars of piss.

These optio&i/suck

Option 3: Reverse it

Pull out IDA/Radare
Grab a beer

Learn you a new ISA

The way of reversing loT
things that don’t run Linux!

.. but how the fuck do you

get the binaries?

' ‘ EHH- f"“-!)ﬁ;(
3 Bl P s =N
A ‘!‘ ------ =€w"&a'
1!\ __________ ")ﬂ -.
" Q\ . Fii"-l ".jr = =

Houbla. ’ . (% »,.' .m__

“I don't know—seems like a lot of work.”

Yeah but I'm fucking
lazy, asshole.

|l don’t want to learn
IDA. | want to fuzz.

Option 4: Emulate It

You have every tool at your
disposal

Hot damn is that a
debugger?

Oh shit waddup it's fuzzy
boiii
Once again, how the fuck

do you get your binary of
choice?

[F IT LOOKS LIKE A DUCK
AND QUACKS LIKE A
DUCK, IT'S A DUCK

COMBY B¢ &

Getting root(fs)

Easy Mode: Update
Packages

Updates for devices are the easiest way to extract a root filesystem

Sometimes little more than a filesystem/partition layout that
gets dd'd right to disk

Android updates are ZIPs containing some executables, a script,
and some filesystems

Newer android updates (small gnes) are very regularly "delta"
updates: These touch a known filesystem directly, and’are very
small but don't contain a full filesystem.

Sometimes, rarely, they're an *actual executable* that gets run on
the device

Probably isn't signed

Probably fetched over HTTP

Downside: They're occasionally very hard to find or are
iIncremental, incomplete patches. Sometimes they're encrypted.

Medium: In-Vivo
extraction

You need a shell
Can you hijack an administrative interface?
Some ping functions can be hijacked into shells
Sometimes it’s literally “telnet to the thing”
Refer to step 0 for more

You need some kind of packer (cpio, tar, etc)
Find is a builtin for most busybox implementations.

You need some way to put it somewhere (netcat, curl, etc)
You might have an HTTPD to fall back on
Need to do reconnaissance on your device

Might need some creativity
Wireshark, Ettercap, Fiddler, etc

Demo: Router firmware
extraction (Actiontec
Router)

B 4 [Advanced Setup -Secut X | + v

= O ® 192.168.0.1

S 2 CenturyLink~ technicolor C1100T ' 28

Ny
Madem Configuration
Help

1£192,168.0.1 - PuTTY

n be found on

technicolor

ENABDLED

Copyright @ 2015, CenturyLink Inc., All Rights Reserved

What did we get?

- | [

= ..

W

12 items

= |

Home Share

T - * USB Drive (E] »

Mame

View

Fat

Drive Tools

Manage

System Volume Information

D mtd.proc
[mtdo
[mtd1
[mtd2
[mitd3
[mtd4

|| mtdblockd
|| mtdblockl
|| mtdblock2
|| mtdblock3
|| mtdblockd

LISE Drive (E2)

Date modified

2018-04-17 00:39
2018-05-29 06:31
2018-05-29 06:23
2018-05-29 06:23
2018-05-29 06:23
2018-05-29 06:23
2018-05-29 06:23
2018-05-29 06:25
2018-05-29 06:27
2018-05-29 06:27
2018-05-29 06:27
2018-05-29 06:27

Type

File folder
PROC File
File

File

File

File

File

File

File

File

File

File

w | () Search USE Drive (E:)

Size

1KB
62,336 KB
62,336 KB
4,096 KB
1,024 KB
128 KB
62,336 KB
62,336 KB
4,096 KB
1,024 KB
128 KB

Surprise Mode: Direct
Extraction

Could be as simple as “remove SD card, image it”

Fllvnnﬂen RMMada. nﬂlﬂect

m e B) - X RetroEngine Sigma - Mini Video
. i Game Console

Retrogaming Simplified. The Greatest Retro-Station
known to Man!

PROJECT OWNER

o gl
&” Doyodo Team (]
v d Santa Monica, United States 7 I I I I a g e I

1Campaign | More

Sever: The Anti-Villain Box (Canceled)

Get ready to no longer exist online.

By Rogue Foundry

OVERVIEW

EEET BB W RetroEneine Siemaiis as simp

Surprise Mode: Direct
Extraction

Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the
data lines, but it can be done!

You will need to understand how the disk is laid out

Binwalk can help later, as can “standard” DOS
partition tables.

Having some in-vivo information is helpful

Surprise Mode: Direct
E e

Partution udi

Having some

Suronrise Mode: Direct

g

DpopopooDn

eMMC ChIP

http://blog.oshpark.com/2017/02/23/retro-cpc-dongle/

Surprise Mode: Direct

~= 7 2 s .
- (5 i

O modberrytechbase.cu Y =
- ° ° n
A"A'D
b ,} MBerry ModBerry Moduino X ESP32 Our Company Blog Q d 7 I I I la g e It

ModBerry

Industrial Raspberry Pi for professional use

READ MORE

Surprise Mode: Direct
Extraction

Could be as simple as “remove SD card, image it”

eMMC is harder though, since you need to get to the data lines,
but it can be done!

You will need to understand how the disk is laid out
Binwalk can help later, as can “standard” DOS partition tables.

Having some in-vivo information is helpful

All Else Fails: Solder to the rescue

Might need to desolder some storage, or otherwise physically
attack the hardware

MTD devices are weird. Prepare to get your hands dirty

Interested in more? HHV and friends are the place to start
looking.

JTAG, etc. might be the hard way out.

Logic
Analyzers

Salae makes a good one
Cheap
Basic
Runs over USB

483V 0 mA

AL 111111 ETLTTTTTTT R
L1 1 1MISO

FF FF FF FF

| — LU MOSI

AC 76 13 0N
'\

3 umﬂmo

-
za
2]

/: =
£ :.n"'%ﬂ.m C: @ '

O
=y .
0
i)
Ha
<
m
i)

http://dangerousprototypes.com/docs/Bus_Pirate https://www.crowdsupply.com/excamera/spidriver

Now that we have that,
what do?

Try mounting it/extracting it/etc. file' might give you a
good idea of what it thinks it might be, as will ‘strings
and the like.

eMMCs sometimes have real partition tables
SD cards often do

Look at the reconnaissance you did

Boot logs: lots of good information about partitions
Fstab, /proc/mounts

Let automation do your
work

Binwalk!
Takes a rough guess at what might be in a place
Makes educated guesses about filesystems
High false positive rate

Photorec might be helpful

Get creative

Losetup and friends are capable of more than you give them
credit for.

There are a lot of filesystems that are read- onI%l or create- and-
read, like cramfs and such. These are often spotted by binwalk
but are even sometimes seen as lzma or oth er compressed or
high-entropy data

If you're O“IK Iookln% to play in IDA/Radare/etc, the bulk extraction
from binwalk might

QEMU: the
Quick
EMUIator

QEMU is a fast processor
emulator for a variety of
targets.

Targets you've never
heard of?
Mainframes
ARM, MIPS
PowerPC
OpenRISC
DEC Alpha

Lots of different ports and
targets have been ported.

christian's Power Mac G3 (PCI graphics)

Contents Hardware Overview:
¥ Hardware
ATA Machine Name: Power Mac G4 (AGP graphics)
\ : 2 Machine Model: PowerMac3,1
(y Audio (Built CPU Type: PowerPC G4 (2.9)
S Bluetooth Number Of CPUs: 1 —
Mac OS x Diagnostics CPU Speed: 933 MHz | 9
: : Memory: 1CB
Disc Burnin
N Bus Speed: 267 MH
Version 10.4 Fibre Chann us Spee &
FireWire
(Software Update...) Graphics/Di
Memory
Processor 933 MHz PowerPC G4 PC Cards
PCI Cards
Memory 1GB Parallel SCSI
(More Info... Po_wer
e —— Printers
T™M & © 1983-2005 Apple Computer, Inc Serial-ATA
All Rights Reserved. UsB
¥ Network
{1000 3.17.0-rc5§ AirPort Card

. X1000_Nemo #1 | e
{
16:27:48 CEST 2§ ocations
} ppc64 GNU/Linuj

10neX1000:~$ gem {Spacing Ty (R HstsT iy 3 : Pictures
-version 1=

yersion 2.1.50,

SR |\ OS X 10.4 Tiger PowerPC
sl f works on QEMU 2.1.50 with
KVM-PR enabled.

supported

4

0102)

Host system:

supported

4

0102)

Reiter Hilfe

1000: /home/christian/virtual machines# qemu-system-ppc -M mac99 -cpu G4 -enable-kvm -m 102/
rom-env 'boot-args=-v'

M| e ™ oot@Amiga... @ [Installing Q... (®ei=u | ®™christian@A... ™christian@A... 1)I[

Welcome to the Haiku shell.

~>A warm welcome to Haiku running inside QEMU under BeOS :-

m-img

riu-irng. 1

AS A FULL FAT VM

You preserve full control over the
whole process

You've ?ot access to things like gdb at
a kernefl level

Requires zero trust in the safety of the
binary

But you probably want a special
kernel and board setup, though there
are generic setups to get youstarted

Any tools are going to need to be
complled for the target environment

| hate cross-compilers.

Two ways to run QEMU

AS A TRANSLATING LOADER

You have access to all your emstmg
x86-64 tools (or whatever your native
tools are)

They're not only native, but they're
running full-spéed.

You can run AFL like it's meant to
Runs nicely in containers

You don’t even need a container!

9 tracks of

Fat VM

Binfmt: Linux’ way of
loading executables

Long ago, Linux added loadable loaders

Originally for the purposes of running JARs from the
command line like God and Sun Microsystems intended.

Turns out this is a great place to put emulators.
Debian ships with support for this in its binfmt-misc package.

QE!VIU can be shipped as a “static userspace” environment
(think WINE)

Uses “magic numbers” — signatures from a database — to
determiné which ones are Supposed to load what.

Fairly simBIe to add new kinds of binaries. You could actually
execute JPEGs if you really wanted to?

QEMU as loader

WITHOUT A CONTAINER

Dumb simple to set up:
gemu-whatever-static <binary>
With binfmt, just call your binary.

Must trust that the executable
is not malicious

Might depend on your local
environment looking like its
target environment

This works best for static,
monolithic executables

WITH A CONTAINER

Bring that whole root filesystem
along!

Run it in the confines of a jail,
Docker instance, even
something like Systemd
containers

Might need root depending on
your container (systemd)

Great for when your binary
loads its own special versions of
libraries that have weird things
added to them

QEMU user Demo

morgan : bash — Konsole

File Edit View Bookmarks Settings Help

root@kickaround:/tmp/alpine# systemd-nspawn -D
overlay-s390x/ rootfs-arm/ rootfs-x86/ run-x86/
overlay-x86/ rootfs-s390x/ run-s390x/ workdir/
root@kickaround:/tmp/alpine# systemd-nspawn -D run-s390x/[}

morgan : bash a morgan : bash
{!‘ & downloads | Alpine Linux - Kongu... . morgan : bash — Konsale

@B 2w ~ 751 AM =

AFL setup

Oh boy. Let’s talk about AFL.

AFL needs to compiled with QEMU support
Magic sauce: CPU_TARGET=whatever
./build_gemu_support.sh

AFL needs to bring along the host’s libraries
Easiest bound with systemd-nspawn

Don’t do this in a VM
It hurts

Konsole

File Edit View Bookmarks Settings Help
root@kickaround:/tmp/alpine# |

. bin: bash - morgan : bash

{!s @& httpi//lcamtuf.coredump.cx/afl/de... . maorgan : bash — Konsole e B =4 ~ 9:28 AM =

Wrapping up

What did we learn today?
Hardware vendors are lazy
Attacking hardware means getting creative
QEMU is pretty neato

AFL runs reaII?/ slow when you're emulating an X86
emulating an IBM mainframe.

Going forward:

| h(l)pe I've given you some idea of the landscape of
tools

Always remember rule 0

More Resources

Non-Linux targets:

RECON 2010 with Igor Skochinsky: Reverse Engineering for
PC Reversers:
http://hexblog.com/files/recon%202010%20Skochinsky.pdf

JTAG Explained: https://blog.senr.io/blog/jtag-explained

https://www.blackhat.com/presentations/bh-europe-
04/bh-eu-04-dehaas/bh-eu-04-dehaas.pdf

https://beckus.github.io/gemu stm32/ (among others)

Linux targets:
eLinux.org — Fucking Gigantic wiki about embedded Linux.
linux-mips.org — Linux on MIPS

http://hexblog.com/files/recon 2010 Skochinsky.pdf
https://blog.senr.io/blog/jtag-explained
https://www.blackhat.com/presentations/bh-europe-04/bh-eu-04-dehaas/bh-eu-04-dehaas.pdf
https://beckus.github.io/qemu_stm32/

Thank you

Keep on hacking.

